1 |
JIN Y C, LIU J Z, XU Z J, et al. Development status and trend of agricultural robot technology[J]. International journal of agricultural and biological engineering, 2021, 14(3): 1-19.
|
2 |
CHEN P P, LI Y, LIU X J, et al. Improving yield prediction based on spatio-temporal deep learning approaches for winter wheat: A case study in Jiangsu province, China[J]. Computers and electronics in agriculture, 2023, 213: ID 108201.
|
3 |
申雪懿, 李东升, 陈琛, 等. 小麦分蘖数目遗传研究进展与展望[J]. 麦类作物学报, 2023, 43(10): 1344-1350.
|
|
SHEN X Y, LI D S, CHEN C, et al. Progress and prospect of genetic research on tiller number in wheat[J]. Journal of triticeae crops, 2023, 43(10): 1344-1350.
|
4 |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2023: 7464-7475.
|
5 |
ZOU Z X, CHEN K Y, SHI Z W, et al. Object detection in 20 years: A survey[J]. Proceedings of the IEEE, 2023, 111(3): 257-276.
|
6 |
HE Y, XIAO L. Structured pruning for deep convolutional neural networks: A survey[J]. IEEE transactions on pattern analysis & machine intelligence, 2024, 46(5): 2900-2919.
|
7 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2016: 770-778.
|
8 |
LU X C, JI J, XING Z Q, et al. Attention and feature fusion SSD for remote sensing object detection[J]. IEEE transactions on instrumentation measurement, 2021, 70: ID 3052575.
|
9 |
REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149.
|
10 |
CHEN W B, LIU M C, ZHAO C J, et al. MTD-YOLO: Multi-task deep convolutional neural network for cherry tomato fruit bunch maturity detection[J]. Computers and electronics in agriculture, 2024, 216: ID 108533..
|
11 |
XU X M, WANG L, LIANG X W, et al. Maize Seedling Leave Counting Based on Semi-Supervised Learning and UAV RGB Images[J]. Sustainability, 2023, 15(12): ID 9583.
|
12 |
DEB M, DHAL K G, DAS A, et al. A CNN-based model to count the leaves of rosette plants (LC-Net)[J]. Scientific reports, 2024, 14: ID 1496.
|
13 |
PRAVEEN KUMAR J, DOMNIC S. Image based leaf segmentation and counting in rosette plants[J]. Information processing in agriculture, 2019, 6(2): 233-246.
|
14 |
YIGIT E, SABANCI K, TOKTAS A, et al. A study on visual features of leaves in plant identification using artificial intelligence techniques[J]. Computers and electronics in agriculture, 2019, 156: 369-377.
|
15 |
XIE X, GE Y, WALIA H, et al. Leaf-counting in monocot plants using deep regression models[J]. Sensors (basel), 2023, 23(4): ID 1890.
|
16 |
KOLHAR S, JAGTAP J. Leaf segmentation and Counting for Phenotyping of Rosette plants using xception-style U-net and Watershed algorithm[M]// Communications in Computer and Information Science. Cham: Springer International Publishing, 2022: 139-150.
|
17 |
REIS D, KUPEC J, HONG J, et al. Real-time flying object detection with YOLOv8[EB/OL]. arXiv: 2305.09972, 2023.
|
18 |
ELFWING S, UCHIBE E, DOYA K. Sigmoid-weighted linear units for neural network function approximation in reinforcement learning[J]. Neural netw, 2018, 107: 3-11.
|
19 |
BRAUWERS G, FRASINCAR F. A general survey on attention mechanisms in deep learning[J]. IEEE transactions on knowledge and data engineering, 2023, 35(4): 3279-3298.
|
20 |
ZHU X Z, CHENG D Z, ZHANG Z, et al. An empirical study of spatial attention mechanisms in deep networks[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2019: 6688-6697.
|
21 |
HOU Q B, ZHOU D Q, FENG J S. Coordinate attention for efficient mobile network design[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2021: 13713-13722.
|
22 |
KUNC V, KLÉMA J. Three decades of activations: a comprehensive survey of 400 activation functions for neural networks[EB/OL]. arXiv: 2402.09092, 2024.
|
23 |
ZHENG Z, WANG P, REN D, et al. Enhancing geometric factors in model learning and inference for object detection and instance segmentation[J]. IEEE transactions on cybernetics, 2022, 52(8): 8574-8586.
|
24 |
PENG H, YU S. A systematic IoU-related method: Beyond simplified regression for better localization[J]. IEEE transactions on image processing, 2021, 30: 5032-5044.
|
25 |
HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]// 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2017: 2961-2969.
|
26 |
张阳婷, 黄德启, 王东伟, 等. 基于深度学习的目标检测算法研究与应用综述[J]. 计算机工程与应用, 2023, 59(18): 1-13.
|
|
ZHANG Y T, HUANG D Q, WANG D W, et al. Review on research and application of deep learning-based target detection algorithms[J]. Computer engineering and applications, 2023, 59(18): 1-13.
|