随着现代信息技术在农业领域的广泛应用,以智慧农业为表现形态的农业智能革命已经到来。智慧农业是农业信息化发展从数字化到网络化再到智能化的高级阶段,对农业发展具有里程碑意义,已成为世界现代农业发展的趋势。分析了日本、欧盟、英国、加拿大、美国等国家和地区政府针对智慧农业发展相继出台的政策、措施和发展规划,并分析了中国农业1.0到4.0的发展历程和近年来智慧农业的发展现状。围绕发展过程中存在的各种问题和需求,阐述了突破智慧农业核心技术、实现农业“机器替代人力”、“电脑替代人脑”、“自主技术替代进口”的三大转变,提高农业生产智能化和经营网络化水平,加快信息化服务普及,降低应用成本,为农民提供用得上、用得起、用得好的个性化精准信息服务,大幅度提高农业生产效率、效能、效益,引领现代农业发展的战略目标。最后并提出了8个重点任务建议和推动智慧农业发展的5项政策建议。
智慧农业是充分运用人的智慧发展农业的新形态,它是农业发展的新阶段、新模式和新业态。农业信息技术的发展是智慧农业发展的必然要求,以农业大数据、云计算、物联网、人工智能、农业等离子体等新一代技术可以赋能智慧农业,为智慧农业的健康发展提供了新技术、新手段和新方案。农业信息化标准化是引导农业科技进步与创新的前提,是智慧农业发展的迫切需要;农业物联网与农业专用芯片是智慧农业发展的核心技术及装备;农业大数据与云计算是海量复杂农业信息处理的有力技术支撑;农业信息安全与区块链是保障农业信息安全、农产品质量认证与农业安全的关键;农业人工智能是提高农业劳动生产力、降低资源消耗、智能高效生产的必然选择;农业等离子体技术是发展健康农业、提升农产品品质切实有效的新手段。智慧农业核心关键技术原始创新自主可控,必将引领智慧农业健康发展。
家畜智能养殖设备是智能农机装备的组成部分之一,是国际农业装备产业技术竞争的焦点。本文重点围绕家畜智能养殖设备与饲喂技术在实践中的应用,进行了系统的性能特点分析。目前家畜智能养殖设备的开发对象主要针对猪和奶牛,主要研发的系统包括妊娠母猪电子饲喂站、哺乳母猪精准饲喂系统、奶牛精准饲喂系统和挤奶机器人等。家畜智能养殖设备的工业化应用必须与养殖模式、畜舍结构布局结合起来,才能发挥设备的使用效率,同时从满足动物的福利出发,与动物生理、生长及行为结合起来,形成设备与动物的互作和相互适应。最后指出了智能设备的研究必须与畜牧业生产的理论、目标产品的功能驱动及养殖方式的创新协调一致,要不断地更新换代,才能助推畜牧业的转型升级。
中国现代农业的发展以及乡村振兴战略的实施需要大量及时有效的农业环境、生产条件、状态及过程信息。基于农业内在的特点,卫星遥感是农业信息快速准确获取的关键技术手段之一。发达国家可用于农业应用的遥感卫星已经形成星座或体系进行联合观测,具有较高的观测时间分辨率,卫星遥感器载荷设计较为充分地考虑了农业应用的需求,观测手段不断创新、观测性能不断提高。目前,我国农业遥感卫星应用还存在很多问题,例如传感器多光谱遥感为主、观测要素缺乏,受遥感传感器性能和遥感卫星地面应用系统能力不足制约,缺少光学与微波等多手段同时相协同观测能力、遥感数据保障率和质量有待提高等,遥感监测手段与国外先进水平存在一定差距。从国内农业生产常规监测、国外农业生产常规监测、重大农业政策执行情况监测和绘制重要农业资源图四个方面全面分析了中国当前遥感卫星业务需求,并考虑未来发展深入分析了农业对遥感卫星应用装备的需求。建议构建编队顺序飞行的,具备多光谱、高光谱、红外以及微波等多种手段的农业卫星星座系统,有效提高多源数据融合精度,综合提供不同波段、不同极化、主动被动、光学微波相互融合的多尺度卫星遥感数据及产品,促进农业遥感技术的快速发展,推动“天空地”数字农业的一体化发展。最后,提出了立足于用户需求,建立中国民用遥感领域农业综合观测卫星系统采用“分步走”战略建议。
现代农业要求农业生产者实时、准确、全面地了解农作物的生长环境和生长状态。与传统的人工田间调查方式相比,无人机是一种高效的农田信息获取平台。本研究将自主研发的八旋翼无人机与农田信息采集设备进行整合,形成了一套用于农情监测的无人机系统,实现了无人机按照预设航线自动巡航并采集农田遥感图像、地理位置信息以及环境照度信息。经测试,在飞行中,图像采集设备能够稳定维持垂直对地的姿态并进行拍摄,采集的数据能够拼接成完整的农田正射影遥感图像。测试结果表明研发的无人机系统能够满足低空农情监测作业要求。与商业化产品相比,该系统避免了因任务设备与飞机独立工作而导致重拍、漏拍的情况,实现了无人机与任务设备高效协同作业。
针对作物产量形成、品种适应性分析的数字化解析和可视化表达需求,以提高作物模拟模型的时效性、协同性和真实感为目标,结合物联网技术与作物模拟模型,进行了田间数据实时采集;应用多智能体技术进行了作物协同模拟方法研究与框架设计;开展了作物生长过程模拟模型及基于作物模型的形态三维可视化关键技术研究,以小麦作物为例,进行了田间试验,阐述了小麦三维形态模拟可视化系统的设计实现并进行了试验验证;构建了Logistic方程模拟小麦叶长、最大叶宽、叶片高度、株高等的生长变化,采用基于曲线、曲面的参数化建模方法和3D图形库OpenGL构造了小麦器官几何模型。结果表明小麦叶长、最大叶宽、叶片高度和株高模拟模型R 2值在0.772~0.999之间,回归方程的F值在10.153~4359.236之间,且Sig.小于显著水平0.05,模型显著性较好,模型的拟合度较高。本研究将作物模拟模型结果和形态结构模型有效结合,实现了以小麦为代表的作物在不同管理措施条件下的生长过程形态三维可视化表达,为作物生产数字化系统应用提供了更有效的途径,该技术体系与方法同样适用于玉米、水稻等作物。
作为传统农业大国,中国多次强调农业现代化的重要性。但生产分散、技术落后、基础薄弱等问题严重阻碍了中国农业信息化的发展。区块链由于采用了分布式存储与计算方式,与分布式经济系统具有较好的兼容性,在金融、物流、电子商务等多个行业具有广泛的应用前景。本研究采用广义区块链的设计思想,结合中国农业发展中遇到的问题,设计了信息采集层、数据层、网络层、共识层、激励层、合约层与应用层的7层农产品信息区块链技术架构。该架构可以提供灵活的分布式存储机制、完备的信息共识体系、可靠的信息防篡改功能和实用的激励回报措施。针对以上功能在农产品信息溯源和农产品市场信息透明化中的应用进行了说明,提出了建立区块链农产品交易体系的概念,最后对区块链在农业领域的应用进行了总结和展望。
在水产养殖中,鱼类的摄食强度可以反映其食欲,准确客观地评估鱼类的摄食强度对指导投喂和生产实践具有重要意义。针对当前鱼类摄食强度评估过程中存在的人工观测效率低、客观性不强的问题,本研究以实现鱼类食欲的自动客观分析为目的,提出了一种基于近红外机器视觉的游泳型鱼类摄食强度的评估方法。首先,利用近红外工业相机搭建了近红外图像采集系统,采集了鱼类摄食过程中的图像。经过一系列图像处理步骤后,利用灰度共生矩阵提取摄食图像的纹理特征变量信息,包括对比度、能量、相关性、逆差距和熵等。之后,将这5个特征变量作为输入向量构建了模型的数据集,并训练了支持向量机分类器。为了提高模型分类的准确率,利用网格搜索法选取支持向量机分类器的最优惩罚系数c和核函数参数g。最后利用训练好的模型将鱼类的摄食强度分为弱、一般、中和强4类,最终实现了鱼类摄食强度的评估。试验结果表明,图像纹理可以较好地描述鱼类摄食过程中的行为变化,正确识别4类摄食强度的准确率达到87.78%,且不需要考虑水花等对成像质量的影响,具有较强的适应性。本方法可用于鱼类食欲的自动客观评估,为后续投喂决策提供理论依据和方法支持。
果实采摘是农业种植生产过程中最耗时费力的环节。为了实现果实的良好抓取,本研究设计了一款结构精简、具有自适应性的柔性机械手。该机械手由柔性手指、气动元件、手腕和底座组成,基于3D打印制作,装配简单。其中,气动元件和柔性手指由柔性材料TPU和PLA打印而成,手腕为具有柔性的一体件打印而成;利用气动元件的伸缩功能实现对手腕的驱动,带动柔性手指自适应变形抓取果实。结合常曲率变形和D-H坐标法建立了单手腕的运动学模型。在此基础上,进行了柔性机械手功能性验证试验和安全测试试验。试验结果表明,柔性机械手具有适应果实的形状进行自适应抓取的功能,对表皮较为脆弱的果实没有损伤;气动元件满足使用要求,可以完成对手腕的动作驱动。研究结果将为机械手柔性抓取结构的设计提供参考价值。
农田作物信息的快速获取与解析是开展精准农业实践的前提和基础。根据农作物病虫草害的实际程度进行变量喷施和作业管理,可减少农业生产成本、优化作物栽培、提高农作物产量和品质,从而实现农业精准管理。近年来,随着无人机产业的快速发展,无人机农业遥感技术因其空间分辨率高、时效性强和成本低等特点,在农作物病虫草害监测应用中发挥了重要作用。本文首先介绍了精准农业航空的基本思想与系统组成和无人机遥感在精准农业航空的地位。接着探讨了无人机农业遥感系统常见的成像方式和遥感影像解析方法,并阐述了国内外无人机农业遥感技术在农作物病虫草害检测研究的最新进展。最后总结了无人机农业遥感技术发展至今面临的挑战并展望了未来的发展方向。本文将为开展无人机农业遥感技术在精准农业航空领域的研究提供理论参考和技术支撑。
搭载高性能传感器和施药装备的农业植保无人机系统是精准农业领域具有代表性的智能装备之一。本研究首先从前端田间作业环境动态感知技术出发,阐述了无人机光谱成像遥感、多传感器融合的SLAM实时环境建模等技术在无人机植保作业方面的应用情况;然后对精准施药过程建模与优化控制有关的前沿技术进行了分析,包括旋翼下方风场结构演化及雾滴沉积过程仿真建模、多区域全覆盖条件下的智能作业路径规划、精准变量施药控制等;最后论述了作业效果评估与过程监管相关技术的发展现状,包括施药作业质量评价方法、基于云平台数据管理的全过程可视化监管等。在总结现有技术发展现状基础上,对未来智能化无人机植保关键技术发展趋势进行了预测,阐明了光谱图像获取与计算智能的深度学习识别聚类、基于高精度雾滴谱和风场模型预测的精准变量施药作业路径规划、基于传感器实时数据的作业质量评估和作业监管等新技术手段,将在遥感信息反演、药液飘移抑制、作业效率优化、施药过程管控等方面带来革命性的进步,使植保作业数据化、透明化,全过程可观化可控制,推动农业生产管理从机械化向智能化和智慧化迈进。
大数据背景下产生了海量图像数据,传统的图像识别方法识别玉米植株病害准确率较低,已远远不能满足需求。卷积神经网络作为深度学习中的常用算法被广泛用于处理机器视觉问题,能自动识别和提取图像特征。因此,本研究提出一种基于数据增强与迁移学习相结合的卷积神经网络识别玉米植株病害模型。该算法首先通过数据增强方法增加数据,以提高模型的泛化性和准确率;再构建基于迁移学习的卷积神经网络模型,引入该模型的训练方式,提取病害图片特征,加速卷积神经网络的训练过程,降低网络的过拟合程度;最后将该模型运用到从农田采集的玉米病害图片,进行玉米病害的精确识别。识别试验结果表明:使用数据增强与迁移学习的卷积神经网络优化算法对玉米主要病害(玉米大斑病、小斑病、灰斑病、黑穗病及瘤黑粉病)的平均识别准确度达96.6%,和单一的卷积神经网络相比,精度提高了25.6%,处理每张图片时间为0.28s,比传统神经网络缩短了将近10倍。本算法的精确度和训练速度上比传统卷积神经网络有明显提高,为玉米等农作物植株病害的识别提供了新方法。
自然场景下苹果目标的精确识别与定位是智慧农业信息感知与获取领域的重要内容。为了解决自然场景下苹果目标识别与定位易受枝叶遮挡的问题,在K-means聚类分割算法的基础上,提出了基于凸壳原理的目标识别算法,并与基于去伪轮廓的目标识别算法和全轮廓拟合目标识别算法作了对比。基于凸壳原理的目标识别算法利用了苹果近似圆形的形状特性,结合K-means算法与最大类间方差算法将果实与背景分离,由凸壳原理得到果实目标的凸壳多边形,对凸壳多边形进行圆拟合,标定出果实位置。为验证算法有效性,对自然场景下的157幅苹果图像进行了测试,基于凸壳原理的目标识别算法、基于去伪轮廓的目标识别方法和全轮廓拟合目标识别方法的重叠率均值分别为83.7%、79.5%和70.3%,假阳性率均值分别为2.9%、1.7%和1.2%,假阴性率均值分别为16.3%、20.5%和29.7%。结果表明,与上面两种对比算法相比较,基于凸壳原理的目标识别算法识别效果更好且无识别错误的情况,该算法可为自然环境下的果实识别与分割问题提供借鉴与参考。
针对大规模农田生境监测场景中无线传感器网络节点在部分作物生长期内呈现节点空间冗余,以及传感器节点采集到的数据之间通常具有很强的时间关联性的特点,本研究提出一种基于矩阵补全的两步节能优化策略来同时降低传感器网络的数据采集和传输能耗,以实现延长网络寿命的目的。该算法首先通过对节点数据信息量的衡量来寻找出空间上的非冗余节点,剩余的冗余节点关闭其采集功能,只作为中继节点传输数据;其次,利用矩阵补全算法的部分采样原理在采样阶段进一步减少时间上的数据冗余量,达到同时降低采集和传输模块能耗的目的。试验结果表明,所提出的算法可减少网络中83%的工作节点数目,有效降低了网络能耗。
数据正在成为基础性战略资源。构建以天空地大数据为关键要素的数字农业管理系统,对于建设数字中国、推进农业高质量发展、抢占全球农业制高点具有重要意义。本研究围绕农业农村部提出的天空地数字农业管理系统建设任务,从农业信息技术学科出发,首先给出了天空地数字农业的科学内涵,阐述了其与传统数字农业的异同点,理清了天空地数字农业管理系统在资源调查、生产调度、灾害监测、市场预警、决策服务的五大核心功能;其次,重点阐述了天空地数字农业管理系统的关键任务,即一个观测体系(天空地一体化的数字农业观测体系)、四个数字化(农业资源权属、生产过程、灾害监测和市场预警)、一个管理平台(农业生产、加工、经营、管理、服务等全产业链的天空地数字农业管理平台);然后,明确提出了天空地数字农业管理系统在标准规范研制、关键技术与装备研发、系统集成与平台开发三方面的科技创新重点任务;最后,针对天空地数字农业管理系统建设的复杂性和系统性,从规划设计、科技创新、资源共享、多方参与、应用领域拓展等方面提出了发展建议。
精准识别农业生产环境信息和农业生产特征,对气象、土壤和作物等多源数据进行综合分类,是提高农业资源利用效率和优化农业种植结构的基础。本研究基于近20年(1998~2017年)气象数据和华北五省的玉米单产统计数据,首先构建了华北平原气候资源和玉米生产时空分布特征数据库,研究区内的降雨量、活动积温、日照时数、太阳辐射和玉米单产均存在显著的时空变化;利用作物精细种植区划方法,将华北平原夏玉米种植区分为极不适宜区、不适宜区、较适宜区、适宜区、极适宜区五大类,各类面积分别占总体的比例约为10%、11%、25%、30%、24%;进一步通过环境类别归属度分析方法,将每一大类分为5小类,概率大于75%的相对稳定区域约占总面积的63%,小于75%的波动区域约占37%;极不适宜区、不适宜区和较适宜区,三类时空分布比较稳定,隶属度为100%分别占各类面积的87.67%、70.41%和84.28%,波动区主要发生在极适宜区和适宜区,以及适宜区和较适宜区之间。本研究构建的华北平原夏玉米精细区划结果,对提高研究区资源利用效率和优化玉米产业布局具有重要的指导意义。
农业机械自动转向是实现农业机械自动化和智能化的关键技术之一,农田作业工况较为复杂,拖拉机自动转向装置的现场安装调试费时费力。针对这一问题,本研究研制了一种拖拉机自动转向试验台,对拖拉机自动转向装置进行模拟调试与测试以保证其控制的准确性和可靠性,从而减少田间测试时间,降低安装使用成本。本研究选用120马力拖拉机前桥,通过对机械结构、液压系统和电气控制系统的设计计算,搭建了拖拉机自动转向试验台。利用惯性测量单元对转向系统工作性能进行测试,试验结果表明方向盘平均转向间隙为16.48°,车轮平均转角延迟时间为0.14s,响应速度和稳定性符合农业机械转向要求。所研制的拖拉机自动转向试验台能够用于测试拖拉机前桥的工作状态,并对其转向性能参数进行准确采集和记录,可为农业机械自动转向装置的调试和性能检测提供一个高效可靠的测试平台。
畜禽设施精细养殖是现代畜牧业发展的前沿领域,其核心在于物联网与传统设施养殖的深度融合。近年来,随着传统家庭式养殖模式逐渐退出,中国畜禽养殖场的管理方式已逐步迈向集约化、规模化和设施化,基于养殖动物个体管理和质量保障且满足动物福利要求的畜禽设施精细化养殖已成为畜禽养殖业的最新发展趋势。本文在阐述畜禽设施精细养殖信息感知与环境调控的重要性的基础上,介绍了信息感知与环境调控相关前沿技术,分析了面临的问题与挑战,指出智能传感器技术将成为推动畜禽设施精细养殖进步的底层驱动技术,兼顾畜禽福利和生产性能的动物拟人化智能调控技术和策略等是面临的重要挑战。最后,就中国畜禽设施精细养殖关键技术如何落地提出了相关建议,旨在为中国畜禽设施养殖业的转型升级和可持续发展提供理论参考和技术支撑。
太阳能杀虫灯在农业趋光性害虫受灯光引诱并接触金属网时释放高压脉冲电流杀灭害虫,可有效减少施用农药造成的环境污染和食品安全问题。本文介绍了利用无线传感器网络技术提升太阳能杀虫灯在农业迁飞性趋光害虫防治领域的应用效果,明确提出了一种新型农业物联网——太阳能杀虫灯物联网。首先,从杀虫灯在国内农业生产中的应用研究现状出发,总结了杀虫灯在林果、水稻和蔬菜等作物生产种植中的部署特点和杀虫工作时段分布情况;其次,分析了现有联网型太阳能杀虫灯节点的产品特点和杀虫灯物联网研究现状;然后,结合太阳能杀虫灯的能量采集方式、田间部署特点,综合分析了基于太阳能能量采集方式的传感器网络研究现状和基于启发式的传感器网络节点部署研究现状;最后,探讨了太阳能杀虫灯物联网的节点部署、能量预留管理、虫害爆发区域边界定位、虫情数据抗干扰传输等关键研究问题,并对太阳能杀虫灯物联网在农业生产中的应用进行了总结和展望。
中国苹果总产量高,但出口量占比低,高端苹果市场多被进口苹果所占领,主要原因是缺乏果品品质分级精选技术与装备,采摘后处理自动化程度低,大部分果品未经加工或简单粗加工后进入消费市场,果品品质不稳定,大大降低了市场竞争力。本文分别对苹果品质无损检测和分级技术的现状进行了研究进展分析,并对其发展进行了展望。苹果无损检测技术主要包括光谱、电特性、CT、色谱、电子鼻和计算机视觉技术,针对各种技术的功能特点和优缺点,提出了发展基于新型传感器技术的苹果气味检测方法;苹果品质分级则主要采用基于机器视觉的多特征分级方法,苹果品质无损检测技术与分级技术的有机结合是苹果品质分级技术的发展方向,同时这对于提高苹果产业竞争力具有促进作用。整体而言,中国苹果品质无损检测和分级技术发展需求紧迫,检测新技术如采用纳米科学、生物技术和人工智能方法的传感器技术及产品在苹果无损、品质分级检测方面具有巨大潜力,多技术的融合如集成电、光、气和计算机视觉等实时、高效、高精度的苹果品质分级系统可能是提高苹果分级品质和提升苹果产业竞争力的重要发展方向。
互联网是一个巨大的资源库,也是一个丰富的知识库。针对农作物小样本引起的过拟合问题,本研究引入了知识迁移和深度学习的方法,采用互联网公开的ImageNet图像大数据集和PlantVillage植物病害公共数据集,以实验室的黄瓜和水稻病害数据集AES-IMAGE为对象开展相关的研究与试验。首先将批归一化算法应用于卷积神经网络CNN中的AlexNet和VGG模型,改善网络的过拟合问题;再利用PlantVillage植物病害数据集得到预训练模型,在改进的网络模型AlexNet和VGG模型上用AES-IMAGE对预训练模型参数调整后进行病害识别。最后,使用瓶颈层特征提取的迁移学习方法,利用ImageNet大数据集训练出的网络参数,将Inception-v3和Mobilenet模型作为特征提取器,进行黄瓜和水稻病害特征提取。本研究结合试验结果探讨了适用于农作物病害识别问题的最佳网络和对应的迁移策略,表明使用VGG网络参数微调的策略可获得的最高准确率为98.33%,使用Mobilenet瓶颈层特征提取的策略可获得96.8%的验证准确率。证明CNN结合迁移学习可以利用充分网络资源来克服大样本难以获取的问题,提高农作物病害识别效率。
发展智慧农业的基础和前提是数字化,尤其是对农地资源利用、农地权属、农业生产等农业全要素的数字化。目前,国内农业数字化水平较低,农地资源空间信息应用较少,需要加快开展农地空间数据在农业生产信息采集分析和农业政策决策执行等方面的应用,推动我国智慧农业的发展。本研究围绕“十三五”以来新增的粮食生产功能区和重要农产品生产保护区(以下统称“两区”)划定农业基础性工作,归纳了“两区”划定的相关概念,总结了划定的业务流程;结合农业生产智能化管理的业务需求和数字化成图的拓扑关系需求,为“两区”划定设计了“区—片块—地块”三级空间结构;提出了基于多源农地空间数据的“两区”划定图件测制关键技术,在分析“两区”行业功用的基础上,以“区—片块—地块”空间结构为制图导向,融合现有多源农地空间数据在空间分布和语义属性上的关联性,从特定空间尺度实现了“两区”空间分布图制作;提出了基于多源农地空间数据的“两区”划定数据建库关键技术,分析了“两区”划定数据建库的业务需求,从空间信息结构视角实现对“两区”划定地理空间实体的抽象化;总结并讨论了多源农地空间数据在“两区”划定过程中的整合应用及存在的问题。研究表明,多源农地空间数据能够在“两区”划定的关键技术环节起到数据支撑作用,同时也需针对具体的应用环境判断其信息可用性,降低多源农地空间数据的偏差及局部缺失对“两区”划定这类系统性工程所造成的影响,实现对基础数据、专题数据、管理数据和统计数据的有效集成,为“两区”划定及智慧农业领域同类基础性工作的有效推行提供参考与借鉴。
水中溶解氧含量低会影响螃蟹的成活率,保证低溶解氧时刻溶解氧的预测精度非常重要。目前,溶解氧传感器价格昂贵且易遭受腐蚀,因此通过相关变量来间接估计溶解氧浓度有重要的意义。本研究在长短时记忆网络(LSTM)模型的基础上,优化LSTM反向传播时的损失函数,提出了提高低溶解氧含量估算精度的溶解氧预测模型(LDO-LSTM)。LDO-LSTM的损失函数是在平均绝对百分比误差(MAPE)基础上,根据溶解氧值的变化趋势和溶解氧浓度大小,分别赋予不同权值的权重函数,并通过均方根误差(RMSE)和平均绝对百分比误差(MAPE)来评估LDO-LSTM和LSTM在不同范围的溶解氧估算能力。对模型的测试试验结果表明:在溶解氧高于6mg/L时,LDO-LSTM和LSTM的RMSE、MAPE差值稳定在0.1左右;在溶解氧低于6mg/L时,LDO-LSTM的RMSE值和MAPE值分别比LSTM低0.25和0.139,说明了LDO-LSTM网络不但可以保证整体溶氧预测精度,而且能够提高较低溶解氧值的估算精度。本研究对于降低水产养殖成本、提高溶解氧估算精度有着重要的作用。
为了快速检测黄龙病这一柑橘毁灭性病害,分析了柑橘黄龙病样本和健康样本的自荧光和拉曼光谱差异,建立了基于自荧光光谱、拉曼光谱和混合光谱的PLS-DA模型,进行了模型的结果比较,最后绘制了三种模型的分类器特征曲线ROC,通过曲线下面积AUC参数进一步评价了模型的性能。试验结果表明,柑橘黄龙病叶片样本和健康叶片样本的自荧光光谱和拉曼光谱存在差异信息。在785nm波长激光诱导下,柑橘叶片样本都产生了比较强的自荧光。黄龙病叶片的自荧光相对于健康样本的自荧光在小于1203cm -1范围更弱,而在大于1206cm -1范围更强,其下降的斜率(绝对值)相对健康样本更小。在典型的黄龙病样本和健康样本的拉曼光谱数据中,均可发现具有以下拉曼峰且具有一致性:920cm -1,1160cm -1,1289cm -1,1331cm -1和1529cm -1。黄龙病样本和健康样本相比在1257cm -1、1396cm -1、1446cm -1、1601 cm -1和1622cm -1具有更大的拉曼峰值强度和光谱带宽,在1006cm -1、1160cm -1、1191cm -1和1529cm -1位置谱峰强度较弱,提示黄龙病样本的类胡萝卜素含量较低。基于自荧光光谱、拉曼光谱和混合光谱三种光谱的PLS-DA模型鉴别的准确率分别为86.08%、98.17%和94.75%。进一步计算三种模型的ROC曲线下面积AUC参数分别为0.9313、0.9991和0.9875,拉曼光谱模型的AUC值最大,也表明拉曼光谱模型的鉴别效果最优。拉曼光谱分析技术可以成为探索柑橘黄龙病快速诊断鉴别的新途径。
棚室蔬菜产业在黑龙江省农业转方式、调结构和供给侧改革中占有重要的战略地位。黑龙江省棚室蔬菜生产规模近年来发展较快,技术支撑需求也与日俱增。本研究针对黑龙江省棚室蔬菜发展规模与技术服务支撑能力不匹配的现状,提出了基于云服务的棚室蔬菜智能终端系统及关键技术的实现方法。本研究以专家服务为主、数据挖掘技术为辅,以物联网设备为感知手段、以智能手机为用户终端,利用云服务对知识、资源、物联网数据的整合配置能力,提供蔬菜专家及棚室蔬菜用户对信息获取、存储、分析和决策的高效解决方案。本研究的部分内容已在黑龙江省农业科研部门、企业、蔬菜合作社、农户等不同用户群体中实验应用,能够为专家提供棚室蔬菜生产环境的远程问诊手段,适用于各类棚室蔬菜应用场景。本研究还提出了对大规模应用场景下的技术解决方案建议,可在全国的棚室蔬菜生产中推广应用,实现更广泛高效的专家技术服务支撑。
为了实现小麦条锈病的远程实时监测,设计并搭建了基于嵌入式系统的小麦条锈病远程监测平台,实现了用户对大田小麦条锈病发病状况的实时监测。首先基于Arduino微控制器和42步进电机控制的六棱柱转轴和传送装置结合,通过蓝牙控制六棱柱转轴上的电磁吸附装置吸附金属加工后的载玻片设计了孢子捕捉器,实现了空气中小麦条锈病孢子图像的采集;其次,通过高倍光学显微镜和电子目镜将采集到的孢子图像通过Linux核心板上传至云端服务器,并通过基于Python的图像处理算法对图像进行中值滤波、边缘提取、角点检测等处理实现孢子计数;最后通过基于Android平台的应用软件实现远程查看孢子图像和计数处理结果。试验结果表明,该平台服务器图像处理算法可实现孢子的准确计数,对测试图像的计数准确率为100%,孢子捕捉器的玻片切换成功率为95%。该研究可为大田小麦条锈病的实时监测奠定基础,也可为大田内其他气传病害的监测提供借鉴。
植保无人机的高质量作业是农业航空实现精准作业的前提,因此对喷雾系统作业特性进行研究显得尤为重要。为了探究影响植保无人机喷雾质量的因素,本研究应用喷雾性能综合试验台(吉林省农业机械研究院研制)对无人机在不同旋翼转速、喷雾高度、离心喷头转速情况下的雾滴沉积分布、雾滴粒径进行了试验测试并对12组试验的沉积特性和粒径数据进行了回归分析。结果表明,同组参数的3次重复试验一致性较好,雾滴发生明显飘移且最大有效沉积率为46.31%,最小为31.74%,由此雾滴有效沉积率均低于50%;对比雾滴粒径DV10、DV50和DV90的回归分析结果,喷雾高度P值大于0.5,喷头转速和旋翼转速P值小于0.5,由此可知,喷雾高度对沉积量影响极显著,但对雾滴粒径的影响不显著;喷头转速和旋翼转速对雾滴粒径影响极显著,而对沉积量影响不显著。本研究试验结果可为提高无人机作业质量和喷洒效率提供理论依据及数据支撑。
团队致力于锻炼和培养一批能为我国现代农业乃至智慧农业等行业提供技术支撑的复合型人才,为现代农业发展和社会进步提供长远和强大的技术支持与智力支持。欢迎广大海内外优秀青年才俊加入!
舒磊,南京农业大学教授/博士生导师、英国林肯大学“林肯教授”/博士生导师、广东省“扬帆计划”引进紧缺拔尖人才、南农—林肯智能工程研究中心(筹)主任。分别在韩国庆熙大学攻读硕士(世界排名247)、爱尔兰国立高威大学攻读博士(世界排名243)、日本大阪大学从事博士后研究(世界排名67)。 主持国家自然科学青年基金及省级重大国际联合项目等共12项,科研总经费超1250万元。长期从事无线传感器网络领域的研究,共发表论文400余篇。在Google Scholar上他引次数为8474次,H-index为51。在Guide2Research网站对全球计算机学科高被引研究者H-index统计排名中为英国区域第99名。(数据更新日期:2019-08-01)
曾获2014年中国计算机学会计算机应用专委会“特别贡献奖”、连续获得2017年度和2018年度IEEE Access期刊“Outstanding Associate Editor”、IEEE HealthCom 2017 “Outstanding Leadership Award”、连续获得2017年度(2 out of 254)和2018年度(5 out of 598)IEEE Systems Journal期刊(JCR Q1, IF: 4.463)最优论文奖、2018年度Journal of Network and Computer Applications期刊(JCR Q1, IF: 5.273)最优论文奖、获得IEEE SIGTELCOM 2017、EAI WICON 2016、IEEE ComManTel 2014、IEEE ICC 2013和IEEE GLOBECOM 2010国际学术会议的最优论文奖。
现担任IEEE Communications Magazine (JCR Q1, IF: 10.356)、IEEE Network (JCR Q1, IF: 7.503)、IEEE Transactions on Industrial Informatics (JCR Q1, IF: 7.377)、IEEE Systems Journal (JCR Q1, IF: 4.463)、IEEE Access (JCR Q1, IF: 4.098)等期刊编委 (影响因子年份:2018年)。 曾在超过50个各类国际会议中担任主席。例如,担任Chinacom 2014、Qshine 2015、Healthcom 2017、Collaboratecom 2017、DependSys 2018等会议的大会主席,担任INISCOM 2015、WICON 2016、Chinacom 2017、Qshine 2017、Simutool 2017、INISCOM 2017、WMNC 2017和中国计算机应用大会(NCCA 2015、NCCA 2016、NCCA 2018)等会议的程序委员会主席。担任超过150个国际会议的评委,例如ICDCS、DCOSS、MASS、ICC、Globecom、ICCCN、WCNC和ISCC等。
病虫害是农业生产过程中影响粮食产量和质量的重要生物灾害。目前,我国的作物病虫害监测方式以点状的地面调查为主,无法大面积、快速获取作物病虫害发生状况和空间分布信息,难以满足作物病虫害的大尺度科学监测和防控的需求。近年来,随着国内外卫星光谱、时间和空间分辨率的不断提升,利用遥感手段开展高效、无损的病虫害监测成为有效提升我国病虫害测报水平的重要手段。与此同时,多平台、多种方式的作物病虫害遥感监测也为病虫害的有效防治和管理提供了重要科技支撑。本文从作物病虫害光谱特征、遥感监测方法和遥感监测系统等方面阐述了作物病虫害遥感监测研究的进展,分析了当前面临的挑战,并对未来发展趋势进行了展望。
作物生产管理已经进入智慧农业阶段。智慧农业是由最先进的农业信息技术、智能装备以及大量的数据资源所驱动的先进农业科技理念。智慧农业继承了精准农业概念,把农业生产管理由机械化和信息化提高到高度自动化和智能化的农业生产管理。精准农业从上世纪八十年代的粗略监测发展到本世纪10年代的详细监测和控制。在精准农业的发展过程中,农业航空在作物保护和肥料施用方面起到了关键的作用。而在作物保护和肥料精准施用方面,基于全球导航产生的带有空间信息遥感数据配方图是至关重要的。随着现代化农业的发展,农业航空会因更有效的土壤和植物健康监测和更加快速的机电系统响应,在推进精准农业实际应用上显得越发重要。本文具体从美国最重要的农业地区之一密西西比三角洲出发,总体介绍了农业航空在精准农业向智慧农业迈进过程中的状况。重点介绍了美国农业部在密西西比三角洲地区在航空应用技术和低空遥感方面的研发工作;为发展新一代精准农业和智慧农业,进一步研发农业航空技术的问题、挑战和机会进行了讨论;最后提出了中国发展智慧农业建议。
随着信息技术的快速发展和农业农村经济的平稳增长,农业信息技术越来越受到关注,资本和技术在农业领域逐渐发力的趋势已经形成。近几年,中国大型信息技术公司开始涉足农业产业,智慧农业发展势头强劲。本文分析了大型互联网企业从事农业的现状及技术应用特点;阐述了当前大批互联网企业进入农业领域的原因,分析了信息技术与农业产业结合的关键领域及存在问题;重点剖析了信息技术在农业领域中的应用需求、瓶颈和前景;针对农业农村数字化发展与新技术应用,提出了防范市场投机风险、明晰主体功能定位、加强科技创新力度、做好引领示范带动等政策建议。
传统深度学习模型在用于蔬菜病害图像识别时,存在由于网络梯度退化导致的识别性能下降问题。为此,本文研究了一种基于深度残差网络模型的番茄叶片病害识别方法。该方法首先利用贝叶斯优化算法自主学习网络中难以确定的超参数,降低了深度学习网络的训练难度。在此基础上,通过在传统深度神经网络中添加残差单元,解决了由于梯度爆炸/消失造成的过深层次病害识别网络模型性能下降的问题,能够实现番茄叶片图像的高维特征提取,根据该特征可进行有效病害鉴定。试验结果表明,本研究中基于超参数自学习构建的深度残差网络模型在番茄病害公开数据集上取得了良好的识别性能,对白粉病、早疫病、晚疫病和叶霉病等4种番茄叶片常见病害的识别准确率达到95%以上。本研究可为快速准确识别番茄叶片病害提供参考。
梯田具有蓄水固沙的作用,是旱作农业区重点建设的高产稳产农田设施,为粮食增产、农民增收提供了有力保障。因仅基于影像数据采用边缘提取方法进行梯田区域分割效果不理想,及时准确地掌握梯田信息较为困难。无人机遥感技术的不断发展为高精度梯田地形信息的获取提供了新方法。本研究以甘肃省榆中县为例,首先从数字高程模型DEM数据中提取坡度,将正射影像与坡度数据融合,并通过基于Canny算子的粗边缘提取方法和基于多尺度分割的精细边缘提取方法,对比分析坡度对无人机遥感梯田影像边缘提取的影响。试验结果表明,正射影像和坡度融合的提取效果均优于单一的正射影像数据提取效果,粗边缘提取方法中正射影像和坡度融合的数据源精度平均提高了23.97%,精细边缘提取方法中正射影像和坡度融合的数据源精度平均提高了17.84%。研究表明,在无人机遥感梯田影像边缘提取中加入一定的地形特征,可以取得更好的边缘提取效果。
为研究智慧农业发展模式与实现途径,本研究设计了小麦产前、产中和产后各生产阶段信息技术与农机农艺融合的基本框架,即产前利用精准导航和激光平地技术实现对土地精准规范化作业,利用空间插值技术和变量施肥技术实现精准化播种与施肥;产中利用物联网和图像处理技术开展营养诊断服务;产后运用传感器技术开展产量实时预测服务。完成并实现了普通农机装备的智能化改造和与农业生产相适应的播种收获装备的研发;研究了具有高效利用光热资源、提高产量和绿色发展的小麦生产优化种植模式;研发了与小麦产前品种播期播量选择和施肥推荐、产中苗情营养诊断、产后产量实时测报等相关系统,并在河南省进行了试验。试验结果表明,采用信息技术与农机农艺融合方案可使小麦增产18.4%,增加产投比16.7%和8.1%,表明信息技术与农机农艺融合的小麦智慧化生产模式是有效的、可行的。