1 | InterviewEditorial: Dr . Yanbo Huang talks about from precision agriculture in the United States to future smart agriculture in China[EB/OL]. (2019-03-25) [2019-08-10]. . |
2 | Thomson S J , Zimba P V , Bryson C T , et al . Potential for remote sensing from agricultural aircraft using digital video[J]. Applied Engineering in Agriculture, 2005, 21(3): 531-537. |
3 | Lan Y , Thomson S J , Huang Y B , et al . Current status and future directions of precision aerial application for site-specific crop management in the USA[J]. Computers and Electronics in Agriculture, 2010, 74(1): 34-38. |
4 | Lan Y , Chen S , Fritz B K . Current status and future trends of precision agricultural aviation technologies[J]. International Journal of Agricultural and Biological Engineering, 2017, 10(3): 1-17. |
5 | Aerial Application [EB/OL]. [2019-10-05]. . |
6 | Neblette C B . Aerial photography for the study of plant diseases[J]. Photo-Era Mag, 1927, 58: 346. |
7 | Taubenhaus J J , Ezekiel W N , Neblette C B . Airplane photography in the study of cotton root rot[J]. Phytopathology, 1929, 19: 1025-1029. |
8 | Steddom K , Jones D , Rush C . A picture is worth a thousand words. American Phytopathological Society[EB/OL]. [2019-09-11]. . |
9 | Huang Y , Brown M . Advancing to the next generation precision agriculture. In Agriculture & Food Systems to 2050-Global Trends, Challenges and Opportunities[M]. Singapore: World Scientific Publishing, 2018. |
10 | USDA-ERS . Latest U.S. atgricultural trade data[EB/OL]. [2019-10-15]. . |
11 | USDA-ERS . 2019. What is agriculture's share of the overall U .S. economy?[EB/OL]. [2019-10-18]. . |
12 | Winkler J A , Andresen J A , Hatfield J L , et al . Climate change in the midwest: a synthesis report for the National Climate Assessment[J]. Isaconf, 2014, 67(5520):1261-1261. |
13 | Snipes C E , Nichols S P , Poston D H , et al . Agricultural Practices of the Mississippi Delta[J]. ACS Symposium Series, 2004: 43-60. |
14 | EU . Directive 2009/128 /EC of the European Parliament and of the Council of 21 October 2009 establishing a framework for Community action to achieve the sustainable use of pesticides[EB/OL]. [2019-08-20]. . |
15 | About ag aviation . National Agricultral Aviation Association (NAAA)[EB/OL]. [2019-07-09] |
16 | FactsIndustry . National agricultral aviation association (NAAA)[EB/OL]. [2019-10-01] . |
17 | IPCadmin . Aerial applications in the USA[EB/OL]. [2019-05-04]. . |
18 | Eckelkamp M . Aerial application by the numbers[EB/OL]. [2019-08-06]. . |
19 | Sato A . The RMAX helicopter UAV[C]// Public Report. Aeronautic Operations. Yamaha Motor Co., Ltd., Shizuoka, Japan, 2003. |
20 | Zhou Z , Zang Y , Lu X , et al . Technology innovation development strategy on agricultural aviation industry for plant protection in China[J]. Transactions of the CSAE, 2013, 29(24): 1-10. |
21 | He X , Bonds J , Herbst A , et al . Recent development of unmanned aerial vehicle for plant protection in East Asia[J]. International Journal of Agricultural and Biological Engineering, 2017, 10(3): 18-30. |
22 | Huang Y , Hoffmann W C , Lan Y , et al . Development of a spray system on an unmanned aerial vehicle platform[J]. Applied Engineering in Agriculture, 2009, 25(6): 803-809. |
23 | Huang Y , Hoffman W C , Lan Y , et al . Development of a low-volume sprayer for an unmanned helicopter[J]. Journal of Agricultural Science. 2014, 7(1): 148-153. |
24 | Giles D K , Billings R . Unmanned aerial platforms for spraying: deployment and performance[J]. Aspects of Applied Biology, 2014, 122: 63-69. |
25 | Kelemen D . The future of unmanned aircraft systems: is there a niche in aerial application?[J]. Ag. Aviation, 2013, 9/10: 15-21. |
26 | ledgerClarion [EB/OL]. [2019-06-09] |
27 | Sanders . OptiGro system[EB/OL]. [2019-06-07] . |
28 | USDA-ARS . Remote sensing technique uses agricultural aircraft[EB/OL]. [2019-07-07]. ScienceDaily, 16 April 2005. . |
29 | USDA-ARS . Agricultural aircraft offer a different view of remote sensing[J]. Agricultural Research magazine, March 2005, 21. . |
30 | Huang Y , Thomson S J . Characterization of in-swath spray deposition for CP-11TT flat-fan nozzles used in low volume aerial application of crop production and protection materials[J]. Transactions of the ASAB, 2011, 54(6): 1973-1979. |
31 | Huang Y , Thomson S J . Characterization of spray deposition and drift from a low drift nozzle for aerial application at different application altitudes[J]. International Journal of Agricultural and Biological Engineering, 2011, 4(4): 1-6. |
32 | Huang Y , Thomson S J , Ortiz B V , et al . Airborne remote sensing assessment of the damage to cotton caused by spray drift from aerially applied glyphosate through spray deposition measurements[J]. Biosystems Engineering, 2010, 107: 212-220. |
33 | Reddy K N , Ding W , Zablotowicz R M , et al . Biological responses to glyphosate drift from aerial application in non-glyphosate-resistant corn[J]. Pest Management Science, 2010, 66: 1148-1154. |
34 | Huang Y , Ding W , Thomson S J , et al . Assessing crop injury caused by aerially applied glyphosate drift using spray sampling[J]. Transactions of the ASABE, 2012, 55(3): 725-731. |
35 | Huang Y , Thomson S J . Evaluation of spray nozzles for aerial application of biological control agents[C]// NAAA Convention, December 5-8, 2016, Long Beach, California, USA, 2016. |
36 | Teske M E , Thistle H W , Ice G G . Technical advances in modeling aerially applied sprays[J]. Transactions of the ASABE, 2003, 46(4): 985-996. |
37 | Taguchi G . System of experimental design[R].Unipub/Kraus/American Supplier Institute, Dearborn, Michigan, USA, 1987. |
38 | Huang Y , Zhan W , Fritz B K , et al . Analysis of impact of various factors on downwind deposition using a simulation method[J]. Journal of ASTM International, 2010, 7(6): 1-11. |
39 | Huang Y , Zhan W , Fritz B K , et al . Optimizing selection of controllable variables to minimize downwind drift from aerially applied sprays[J]. Applied Engineering in Agriculture, 2012, 28(3): 307-314. |
40 | Thomson S J , Huang Y , Fritz B K . Atmospheric stability intervals influencing the potential for off-target movement of spray in aerial application[J]. International Journal of Agricultural Science and Technology, 2017, 5(1): 1-17. |
41 | Huang Y , Thomson S J . Atmospheric stability determination at different time intervals for determination of aerial application timing[J]. Journal of Biosystems Engineering, 2016, 41(4): 337-341. |
42 | Huang Y , Fisher D K , Silva M , et al . A real-time web tool for safe aerial application to avoid off-target movement of spray induced by stable atmospheric conditions in the Mississippi Delta[J]. Applied Engineering in Agriculture, 2019, 35(1): 31-38. |
43 | Huang Y , Fisher D K . A web guide system for aerial application to avoid off-target drift caused by temperature inversion through open-source weather stations[C]// ASABE Paper No. 1900193. St. Joseph, MI.ASABE. 2019. |
44 | Smith L A . Automatic flow control for aerial applications[C]// Applied Engineering in Agriculture, 2001, 17(4): 449-455. |
45 | Thomson S J , Smith L A , Hanks J E . Evaluation of application accuracy and performance of a hydraulically operated variable-rate aerial application system[J]. Transactions of the ASABE, 2009, 52(3): 715-722. |
46 | Thomson S J , Huang Y , Hanks J E , et al . Improving flow response of a variable-rate aerial application system by interactive refinement[J]. Computers and Electronics in Agriculture, 2010, 73: 99-104. |
47 | de Castro A I , Jurado-Expósito M , Pe?a-Barragán J M , et al . Airborne multi-spectral imagery for mapping cruciferous weeds in cereal and legume crops[J]. Precision Agriculture, 2012, 13: 302-321. |
48 | de Castro A I , Torres-Sánchez J , Pe?a J M , et al . An automatic random forest-OBIA algorithm for early weed mapping between and within crop rows using UAV imagery[J]. Remote Sensing, 2018, 10(285): 1-21. |
49 | Pinter P J , Hatfield Jr J L , Schepers J S , et al . Remote sensing for crop management[J]. Photogrammetric Engineering and Remote Sensing, 2003, 69: 647-664. |
50 | Shaw D R , Kelley F S . Evaluating remote sensing for determining and classifying soybean anomalies[J]. Precision Agriculture, 2005, 6: 421-429. |
51 | Torres-Sánchez J , López-Granados F , De Castro A I , et al . configuration and specifications of an Unmanned Aerial Vehicle (UAV) for early site specific weed management[J]. PLoS ONE, 2013, 8(3): e58210. |
52 | Ortiz B V , Thomson S J , Huang Y , et al . Determination of differences in crop injury from aerial application of glyphosate using vegetation indices[J]. Computers and Electronics in Agriculture, 2011, 77: 204-213. |
53 | Huang Y , Ouellet-Plamondon C M , Thomson S J , et al . Characterizing downwind deposition of the off-target drift from aerially applied glyphosate using RbCl as tracer[J]. International Journal of Agricultural and Biological Engineering, 2017, 10(3): 31-36. |
54 | Lan Y , Huang Y , Martin D E , et al . Development of an airborne remote sensing system for crop pest management: System integration and verification[J]. Applied Engineering in Agriculture, 2009, 25(4): 607-615. |
55 | Huang Y , Thomson S J , Lan Y , et al . Multispectral imaging systems for airborne remote sensing to support agricultural production management[J]. International Journal of Agricultural and Biological Engineering, 2010, 3(1): 50-62. |
56 | Huang Y , Reddy K N , Fletcher R S , et al . UAV low-altitude remote sensing for precision weed management [J]. Weed Technology, 2018, 32: 2-6. |
57 | Huang Y , Thomson S J , Brand H J , et al . Development and evaluation of low-altitude remote sensing systems for crop production management[J]. International Journal of Agricultural and Biological Engineering, 2016, 9(4): 1-11. |
58 | Huang Y , Reddy K N . Unmanned aerial vehicle: A unique platform for low-altitude remote sensing for crop management[J]. Proceedings of the Plenary and Lead Papers of the 25th Asian-Pacific Weed Science Society Conference, 2015, 1: 185-192. |
59 | Huang Y , Brand H J , Pennington D , et al . Determining soybean injury from Dicamba using RGB and CIR images acquired by UAVs[C]// Proceedings of 13th International Conference on Precision Agriculture, St. Louis, MO., 2016b, July 31-August 3, 2016. 6. |
60 | Huang Y , Brand H J , Sui R , et al . Cotton yield estimation using very high-resolution digital images acquired with a low-cost small unmanned aerial vehicle[J]. Transactions of the ASABE, 2016, 59(6): 1563-1574. |
61 | International survey of herbicide resistant weeds [EB/OL]. [2019-06-06]. . |
62 | Reddy K N , Huang Y , Lee M A , et al . Glyphosate-resistant and glyphosate-susceptible Palmer amaranth (Amaranthus palmeri S Wats.): Hyperspectral reflectance properties of plants and potential for classification[J]. Pest Management Science, 2014, 70: 1910-1917. |
63 | Lee M A , Huang Y , Nandula V K , et al . Differentiating glyphosate-resistant and glyphosate-sensitive Italian ryegrass using hyperspectral imagery[C]// Proceedings SPIE 9108, Sensing for Agriculture and Food Quality and Safety VI, 91080B, 2014. |
64 | Huang Y , Lee M A , Nandula V K , et al . Hyperspectal imaging for differentiating glyphosate-resistant and glyphosate-susceptible Italian ryegrass[J]. American Journal of Plant Sciences, 2018, 9: 1467-1477. |
65 | Singh B D , Singh A K . Marker-assisted plant breeding: principles and practices[J]. Springer India, New Delhi, India, 2015. |
66 | Kumar J , Pratap A , Kumar S . Phenomics in crop plants: trends, options and limitations[M]. Springer India, New Delhi, India, 2015. |
67 | Awada L , Phillips P W B , Smyth S J . The adoption of automated phenotyping by plant breeders[J]. Euphytica, 2018, 214(148): 1-15. |
68 | Ehmke T . Unmanned aerial systems for field scouting and spraying[N]. CSA News, 2013, 58(12): 4-9. |
69 | Yang C , Odvody G N , Thomasson J A , et al . Site-specific management of cotton root rot using airborne and high-resolution satellite imagery and variable-rate technology[J]. Transactions of the ASABE, 2018, 61(3): 849-858. |
70 | Cowley D C , Moriarty C , Geddes G , et al . UAVs in context: archaeological airborne recording in a national body of survey and record[J]. Drones, 2018, 2(2): 1-16. |
71 | Huang Y . Infrastructure development for farm-scale remote sensing big data service[C]// Proceedings of SPIE Asia-Pacific Remote Sensing, Honolulu, HI, 2018, September 24-26, 2018, 10780(17): 1-9. |
72 | Huang Y , Chen Z , Yu T , et al . Agricultural remote sensing big data: management and applications[J]. Journal of Integrative Agriculture, 2018, 17(9): 1915-1931. |
73 | Pearce J M . The case for open source appropriate technology[J]. Environment, Development and Sustainability, 2012, 14: 425-431. |
74 | Fisher D K , Gould P J . Open-source hardware is a low-cost alternative for scientific instrumentation and research[J]. Modern Instrumentation, 2012, 1(2): 8-20. |
75 | projectsThingspeak For IOT [EB/OL]. [2019-10-04]. |
76 | Brookes G , Barfoot P . The income and production effects of biotech crops globally 1996-2009[J]. International Journal of Biotechnology, 2011, 12: 1-49. |