1 | Cen H, Wan L, Zhu J, et al. Dynamic monitoring of biomass of rice under different nitrogen treatments using a lightweight uav with dual image-frame snapshot cameras[J]. Plant Methods, 2019, 15: no.32. | 2 | Féret J B, Le Maire G, Jay S, et al. Estimating leaf mass per area and equivalent water thickness based on leaf optical properties: Potential and limitations of physical modeling and machine learning[J]. Remote Sensing of Environment, 2019, 231: 1-14. | 3 | Yao J, Sun D, Cen H, et al. Phenotyping of Arabidopsis drought stress response using kinetic chlorophyll fluorescence and multicolor fluorescence imaging[J]. Frontiers in Plant Science, 2018, 9: no. 603. | 4 | Li Y, Zhou Q, Zhou J, et al. Assimilating remote sensing information into a coupled hydrology-crop growth model to estimate regional maize yield in arid regions[J]. Ecological Modelling, 2014, 291: 15-27. | 5 | Jin X, Li Z, Yang G, et al. Winter wheat yield estimation based on multi-source medium resolution optical and radar imaging data and the AquaCrop model using the particle swarm optimization algorithm[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 126: 24-37. | 6 | Sulik J J, Long D S. Spectral considerations for modeling yield of canola[J]. Remote Sensing of Environment, 2016, 184: 161-174. | 7 | Campos-Taberner M, García-Haro F J, Camps-Valls G, et al. Multitemporal and multiresolution leaf area index retrieval for operational local rice crop monitoring[J]. Remote Sensing of Environment, 2016, 187: 102-118. | 8 | Jia K, Liang S, Gu X, et al. Fractional vegetation cover estimation algorithm for Chinese GF-1 wide field view data[J]. Remote Sensing of Environment, 2016, 177: 184-191. | 9 | Punalekar S M, Verhoef A, Quaife T L, et al. Application of Sentinel-2A data for pasture biomass monitoring using a physically based radiative transfer model[J]. Remote Sensing of Environment, 2018, 218: 207-220. | 10 | Moharana S, Dutta S. Spatial variability of chlorophyll and nitrogen content of rice from hyperspectral imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 122: 17-29. | 11 | Clevers J G P W, Gitelson A A. Remote estimation of crop and grass chlorophyll and nitrogen content using red-edge bands on Sentinel-2 and-3[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 23: 344-351. | 12 | 陈仲新, 郝鹏宇, 刘佳, 等. 农业遥感卫星发展现状及我国监测需求分析[J]. 智慧农业, 2019, 1(1): 32-42. | 12 | Chen Z, Hao P, Liu J, et al. Technical demands of agricultural remote sensing satellites in China[J]. Smart Agriculture, 2019, 1(1): 32-42. | 13 | 兰玉彬, 邓小玲, 曾国亮. 无人机农业遥感在农作物病虫草害诊断应用研究进展[J]. 智慧农业, 2019, 1(2): 1-19. | 13 | Lan Y, Deng X, Zeng G. Advances in diagnosis of crop diseases, pests and weeds by UAV remote sensing[J]. Smart Agriculture, 2019, 1(2): 1-19. | 14 | Wan L, Li Y, Cen H, et al. Combining UAV-based vegetation indices and image classification to estimate flower number in oilseed rape[J]. Remote Sensing, 2018, 10(9): no.1484. | 15 | Yu N, Li L, Schmitz N, et al. Development of methods to improve soybean yield estimation and predict plant maturity with an unmanned aerial vehicle based platform[J]. Remote Sensing of Environment, 2016, 187: 91-101. | 16 | 高林, 杨贵军, 李红军, 等. 基于无人机数码影像的冬小麦叶面积指数探测研究[J]. 中国生态农业学报, 2016, 24(9): 1254-1264. | 16 | Gao L, Yang G, Li H, et al. Winter wheat LAI estimation using unmanned aerial vehicle RGB-imaging[J]. Chinese Journal of Eco-Agriculture, 2016, 24(9): 1254-1264. | 17 | Xu X Q, Lu J S, Zhang N, et al. Inversion of rice canopy chlorophyll content and leaf area index based on coupling of radiative transfer and Bayesian network models[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 150: 185-196. | 18 | Wang Z, Skidmore A K, Darvishzadeh R, et al. Mapping forest canopy nitrogen content by inversion of coupled leaf-canopy radiative transfer models from airborne hyperspectral imagery[J]. Agricultural and Forest Meteorology, 2018, 253: 247-260. | 19 | Espinoza C Z, Khot L R, Sankaran S, et al. High resolution multispectral and thermal remote sensing-based water stress assessment in subsurface irrigated grapevines[J]. Remote Sensing, 2017, 9: no.961. | 20 | Matese A, Baraldi R, Berton A, et al. Estimation of water stress in grapevines using proximal and remote sensing methods[J]. Remote Sensing, 2018, 10(1): no. 114. | 21 | Zarco-Tejada P J, González-Dugo V, Berni J A J. Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera[J]. Remote Sensing of Environment, 2012, 117: 322-337. | 22 | Maimaitijiang M, Ghulam A, Sidike P, et al. Unmanned Aerial System (UAS)-based phenotyping of soybean using multi-sensor data fusion and extreme learning machine[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 134: 43-58. | 23 | 朱姜蓬, 岑海燕, 何立文, 等. 农情监测多旋翼无人机系统开发及性能评估[J]. 智慧农业, 2019, 1(1): 43-52. | 23 | Zhu J, Cen H, He L, et al. Development and performance evaluation of a multi-rotor unmanned aircraft system for agricultural monitoring[J]. Smart Agriculture, 2019, 1(1): 43-52. | 24 | 鲍一丹, 李艺健, 何勇, 等. 基于波段权重的多尺度 Retinex 遥感图像渐晕校正方法[J]. 农业工程学报, 2019, 35(17): 186-193. | 24 | Bao Y, Li Y, He Y, et al. Vignetting correction for remote sensing image using multi-scale Retinex based on band weight[J]. Transactions of the CSAE, 2019, 35(17): 186-193. | 25 | Tucker C J. Red and photographic infrared linear combinations for monitoring vegetation[J]. Remote Sensing of Environment, 1979, 8(2): 127-150. | 26 | Metternicht G. Vegetation indices derived from high-resolution airborne videography for precision crop management[J]. International Journal of Remote Sensing, 2003, 24(14): 2855-2877. | 27 | Gamon J A, Surfus J S. Assessing leaf pigment content and activity with a reflectometer[J]. The New Phytologist, 1999, 143(1): 105-117. | 28 | Bendig J, Yu K, Aasen H, et al. Combining UAV-based plant height from crop surface models, visible, and near infrared vegetation indices for biomass monitoring in barley[J]. International Journal of Applied Earth Observation and Geoinformation, 2015, 39: 79-87. | 29 | Haralick R M, Shanmugam K, Dinstein I H. Textural features for image classification[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1973 (6): 610-621. | 30 | Torres-Sánchez J, Pe?a J M, de Castro A I, et al. Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV[J]. Computers and Electronics in Agriculture, 2014, 103: 104-113. | 31 | Rasmussen J, Ntakos G, Nielsen J, et al. Are vegetation indices derived from consumer-grade cameras mounted on UAVs sufficiently reliable for assessing experimental plots?[J]. European Journal of Agronomy, 2016, 74: 75-92. | 32 | Mutanga O, Adam E, Cho M A. High density biomass estimation for wetland vegetation using WorldView-2 imagery and random forest regression algorithm[J]. International Journal of Applied Earth Observation and Geoinformation, 2012, 18: 399-406. | 33 | Yue J, Yang G, Tian Q, et al. Estimate of winter-wheat above-ground biomass based on UAV ultrahigh-ground-resolution image textures and vegetation indices[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 150: 226-244. | 34 | Liu T, Li R, Zhong X, et al. Estimates of rice lodging using indices derived from UAV visible and thermal infrared images[J]. Agricultural and Forest Meteorology, 2018, 252: 144-154. |
|