LI Zusheng1,2(), TANG Jishen2, KUANG Yingchun1(
)
Received:
2024-12-02
Online:
2025-01-24
Foundation items:
About author:
LI Zusheng, E-mail: lizusheng@stu.hunau.edu.cn
corresponding author:
CLC Number:
LI Zusheng, TANG Jishen, KUANG Yingchun. A Lightweight Model for Detecting Small Targets of Litchi Pests Based on Improved YOLOv10n[J]. Smart Agriculture, doi: 10.12133/j.smartag.SA202412003.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202412003
Table 3
Comparison results of improving the YOLOv10n model in the CG dataset using different attention mechanisms
Model | Model Size/MB | AP50/% | AP50:95/% | AP-Small50:95/% | GFLOPs | Params/M | FPS |
---|---|---|---|---|---|---|---|
YOLOv10n+C2f_MCA | 4.56 | 89.3 | 61.1 | 58.4 | 5.1 | 1.78 | 162.2 |
YOLOv10n+C2f_CBAM | 4.56 | 89.3 | 61.1 | 58.3 | 5.1 | 1.78 | 204.1 |
YOLOv10n+C2f_FCA | 4.59 | 89.2 | 61.1 | 58.4 | 5.1 | 1.81 | 200.7 |
YOLOv10n+C2f_PPA | 6.37 | 89.6 | 61.5 | 58.6 | 7.5 | 2.68 | 108.3 |
YOLOv10n+C2f_MCAttention | 4.57 | 89.0 | 60.9 | 58.1 | 5.1 | 1.79 | 233.9 |
YOLOv10n+C2f_GLSA | 5.33 | 90.4 | 62.0 | 59.5 | 5.7 | 2.11 | 153.2 |
Table 4
The ablation results of the YOLO-LP model
Baseline | C2f_GLSA | FreqPANet | SIoU | AP50/% | AP50:95/% | AP-Small50:95 | GFLOPs | Params/M | FPS |
---|---|---|---|---|---|---|---|---|---|
YOLOv10n | × | × | × | 89.0 | 61.2 | 58.3 | 6.5 | 2.27 | 259.3 |
√ | × | × | 90.4 | 62.0 | 59.5 | 5.7 | 2.11 | 153.2 | |
× | √ | × | 89.4 | 61.3 | 58.4 | 6.2 | 2.12 | 169.5 | |
× | × | √ | 89.8 | 61.9 | 59.2 | 6.5 | 2.27 | 257.1 | |
√ | √ | × | 90.3 | 61.8 | 59.3 | 5.4 | 1.97 | 121.9 | |
√ | × | √ | 89.7 | 61.5 | 58.7 | 5.7 | 2.11 | 150.7 | |
× | √ | √ | 90.2 | 62.0 | 59.4 | 6.2 | 2.12 | 168.8 | |
√ | √ | √ | 90.9 | 62.2 | 59.5 | 5.4 | 1.97 | 122.6 |
Table 6
Comparison test results between YOLO-LP and current mainstream models on CG dataset
Model | Model Size/MB | AP50/% | AP50:95/% | AP-Small50:95/% | GFLOPs | Params/M |
---|---|---|---|---|---|---|
YOLOv3 | 117.8 | 89.4 | 61.7 | 59.0 | 154.6 | 61.50 |
YOLOv5n | 5.02 | 89.7 | 61.3 | 58.4 | 7.1 | 2.50 |
YOLOv8n | 5.95 | 88.5 | 60.4 | 57.2 | 8.1 | 3.00 |
YOLOv9s | 14.5 | 90.3 | 62.2 | 59.2 | 26.7 | 7.17 |
RT-DETR-R18 | 38.5 | 90.9 | 63.1 | 60.4 | 56.9 | 19.87 |
Conditional-DETR-R50 | 525.9 | 80.2 | 50.7 | 47.3 | 43.5 | 43.40 |
TOOD-R50 | 245.6 | 89.6 | 59.8 | 57.0 | 81.6 | 32.00 |
GFL-R50 | 247.7 | 88.1 | 59.5 | 56.6 | 84.6 | 32.30 |
Cascade-RCNN-R50 | 531.5 | 84.6 | 57.8 | 54.7 | 121.0 | 69.10 |
Faster-RCNN-R50 | 317.6 | 83.2 | 55.5 | 52.5 | 93.6 | 41.40 |
DINO-R50 | 569.6 | 89.9 | 60.3 | 57.6 | 122.0 | 47.50 |
YOLO-LP(Ours) | 5.1 | 90.9 | 62.2 | 59.5 | 5.4 | 1.97 |
Table 7
Comparison test results of YOLO-LP in different scenarios
场景名称 | 模型 | AP50/% | AP50:95/% | AP-Small50:95/% |
---|---|---|---|---|
晴天 | YOLOv10n | 86.2 | 60.5 | 56.2 |
YOLO-LP | 88.1 | 61.5 | 58.2 | |
阴天 | YOLOv10n | 88.7 | 60.3 | 56.4 |
YOLO-LP | 91.2 | 61.6 | 57.7 | |
雨后 | YOLOv10n | 87.7 | 58.5 | 59.3 |
YOLO-LP | 89.7 | 60.9 | 61.7 | |
实验室 | YOLOv10n | 95.5 | 68.9 | 68.4 |
YOLO-LP | 96.2 | 67.9 | 67.8 |
1 |
齐文娥, 陈厚彬, 罗滔, 等. 中国大陆荔枝产业发展现状、趋势与对策[J]. 广东农业科学, 2019, 46(10): 132-139.
|
|
|
2 |
陈厚彬, 杨胜男, 苏钻贤, 等. 2024年全国荔枝生产形势分析与管理建议[J]. 中国热带农业, 2024(3): 8-20.
|
|
|
3 |
刘冬梅, 杨杭旭, 周宏平, 等. 茶树植保机械及减量施药技术研究进展[J]. 中国农机化学报, 2021, 42(9): 59-67.
|
|
|
4 |
白荻, 王寅凯, 熊燕华. 基于集成学习的茶树病虫害检测方法[J/OL]. 南京农业大学学报. (2024-08-01)[2024-11-23].
|
|
|
5 |
牛冲, 牛昱光, 李寒, 等. 基于图像灰度直方图特征的草莓病虫害识别[J]. 江苏农业科学, 2017, 45(4):169-172.
|
|
|
6 |
|
7 |
欧善国, 张桂香, 彭晓丹. 荔枝病虫害图像识别技术研究和应用[J]. 农业工程, 2020, 10(11): 29-35.
|
|
|
8 |
叶进, 邱文杰, 杨娟, 等. 基于深度学习的荔枝虫害识别方法[J]. 实验室研究与探索, 2021, 40(6): 29-32.
|
|
|
9 |
|
10 |
WOO S,
|
11 |
彭红星, 何慧君, 高宗梅, 等. 基于改进ShuffleNetV2模型的荔枝病虫害识别方法[J]. 农业机械学报, 2022, 53(12): 290-300.
|
|
|
12 |
谢家兴, 陈斌瀚, 彭家骏, 等. 基于改进ShuffleNetV2的荔枝叶片病虫害图像识别[J]. 果树学报, 2023, 40(5): 1024-1035.
|
|
|
13 |
王卫星, 刘泽乾, 高鹏, 等. 基于改进YOLOv4的荔枝病虫害检测模型[J]. 农业机械学报, 2023, 54(5): 227-235.
|
|
|
14 |
|
15 |
|
16 |
|
17 |
|
18 |
|
19 |
|
20 |
|
21 |
|
22 |
|
23 |
|
24 |
|
25 |
|
26 |
|
[1] | HU Chengxi, TAN Lixin, WANG Wenyin, SONG Min. Lightweight Tea Shoot Picking Point Recognition Model Based on Improved DeepLabV3+ [J]. Smart Agriculture, 2024, 6(5): 119-127. |
[2] | HOU Yiting, RAO Yuan, SONG He, NIE Zhenjun, WANG Tan, HE Haoxu. A Rapid Detection Method for Wheat Seedling Leaf Number in Complex Field Scenarios Based on Improved YOLOv8 [J]. Smart Agriculture, 2024, 6(4): 128-137. |
[3] | WENG Zhi, FAN Qi, ZHENG Zhiqiang. Automatic Measurement Method of Beef Cattle Body Size Based on Multimodal Image Information and Improved Instance Segmentation Network [J]. Smart Agriculture, 2024, 6(4): 64-75. |
[4] | LI Minghuang, SU Lide, ZHANG Yong, ZONG Zheying, ZHANG Shun. Automatic Measurement of Mongolian Horse Body Based on Improved YOLOv8n-pose and 3D Point Cloud Analysis [J]. Smart Agriculture, 2024, 6(4): 91-102. |
[5] | WENG Zhi, LIU Haixin, ZHENG Zhiqiang. CSD-YOLOv8s: Dense Sheep Small Target Detection Model Based on UAV Images [J]. Smart Agriculture, 2024, 6(4): 42-52. |
[6] | WANG Yuxiao, SHI Yuanyuan, CHEN Zhaoda, WU Zhenfang, CAI Gengyuan, ZHANG Sumin, YIN Ling. Pig Back Transformer: Automatic 3D Pig Body Measurement Model [J]. Smart Agriculture, 2024, 6(4): 76-90. |
[7] | DAI Xin, WANG Junhao, ZHANG Yi, WANG Xinjie, LI Yanxing, DAI Baisheng, SHEN Weizheng. Automatic Detection Method of Dairy Cow Lameness from Top-view Based on the Fusion of Spatiotemporal Stream Features [J]. Smart Agriculture, 2024, 6(4): 18-28. |
[8] | ZHU Yiping, WU Huarui, GUO Wang, WU Xiaoyan. Identification Method of Kale Leaf Ball Based on Improved UperNet [J]. Smart Agriculture, 2024, 6(3): 128-137. |
[9] | ZHANG Yuyu, BING Shuying, JI Yuanhao, YAN Beibei, XU Jinpu. Grading Method of Fresh Cut Rose Flowers Based on Improved YOLOv8s [J]. Smart Agriculture, 2024, 6(2): 118-127. |
[10] | ZHANG Jing, ZHAO Zexuan, ZHAO Yanru, BU Hongchao, WU Xingyu. Oilseed Rape Sclerotinia in Hyperspectral Images Segmentation Method Based on Bi-GRU and Spatial-Spectral Information Fusion [J]. Smart Agriculture, 2024, 6(2): 40-48. |
[11] | ZHANG Ronghua, BAI Xue, FAN Jiangchuan. Crop Pest Target Detection Algorithm in Complex Scenes:YOLOv8-Extend [J]. Smart Agriculture, 2024, 6(2): 49-61. |
[12] | WANG Herong, CHEN Yingyi, CHAI Yingqian, XU Ling, YU Huihui. Image Segmentation Method Combined with VoVNetv2 and Shuffle Attention Mechanism for Fish Feeding in Aquaculture [J]. Smart Agriculture, 2023, 5(4): 137-149. |
[13] | ZHOU Huamao, WANG Jing, YIN Hua, CHEN Qi. Phenotype Analysis of Pleurotus Geesteranus Based on Improved Mask R-CNN [J]. Smart Agriculture, 2023, 5(4): 117-126. |
[14] | ZUO Haoxuan, HUANG Qicheng, YANG Jiahao, MENG Fanjia, LI Sien, LI Li. In Situ Identification Method of Maize Stalk Width Based on Binocular Vision and Improved YOLOv8 [J]. Smart Agriculture, 2023, 5(3): 86-95. |
[15] | LIU Yixue, SONG Yuyang, CUI Ping, FANG Yulin, SU Baofeng. Diagnosis of Grapevine Leafroll Disease Severity Infection via UAV Remote Sensing and Deep Learning [J]. Smart Agriculture, 2023, 5(3): 49-61. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||