1 | 李道亮, 李震. 无人农场系统分析与发展展望[J]. 农业机械学报, 2020, 51(7): 1-12. | 1 | LI D, LI Z. System analysis and development prospect of unmanned farming[J]. Transactions of the CSAM, 2020, 51(7): 1-12. | 2 | HFF.Hands Free Farm successfully completes first drilling operation[EB/OL].[2022-12-01].. | 3 | 罗锡文, 廖娟, 胡炼, 等. 我国智能农机的研究进展与无人农场的实践[J]. 华南农业大学学报, 2021, 42(6): 8-17. | 3 | LUO X, LIAO J, HU L, et al. Research progress of intelligent agricultural machinery and practice of unmanned farm in China[J]. Journal of South China Agricultural University, 2021, 42(6): 8-17. | 4 | 和贤桃. 处方图式变量播种控制系统研究与试验[D]. 北京: 中国农业大学, 2018. | 4 | HE X. Research and experiment on map-based control system of variable rate seeding[D]. Beijing: China Agricultural University, 2018. | 5 | 张东兴, 刘江, 杨丽, 等. 基于VIS-NIR的播种沟内土壤水分测量传感器研究[J]. 农业机械学报, 2021, 52(2): 218-226. | 5 | ZHANG D, LIU J, YANG L, et al. Soil moisture measurement sensor research in seeding ditch based on VIS-NIR[J]. Transactions of the CSAM, 2021, 52(2): 218-226. | 6 | 朱文静, 冯展康, 吴抒航, 等. 机载非接触式近红外土壤墒情检测系统研制[J]. 农业工程学报, 2022, 38(9): 73-80. | 6 | ZHU W, FENG Z, WU S, et al. Development of an airborne non-contact near-infrared soil moisture detection system[J]. Transactions of the CSAE, 2022, 38(9): 73-80. | 7 | WEATHERLY E, BOWERS J. Automatic depth control of a seed planter based on soil drying front sensing[J]. Transactions of the ASAE, 1997, 40(2): 295-305. | 8 | PRICE R, GAULTNEY L. Soil moisture sensor for predicting seed planting depth[J]. Transactions of the ASAE, 1993, 36(6). 1703-1711. | 9 | MOUAZEN AM, JOSSE D, HERMAN R. Towards development of on-line soil moisture content sensor using a fibre-type NIR spectrophotometer[J]. Soil and Tillage Research, 2005, 80(1-2): 171-183. | 10 | 杨玮, 韩雨, 李民赞, 等. 基于数字示波器的车载式土壤电导率检测系统研究[J]. 农业机械学报, 2020, 51(S2): 395-401. | 10 | YANG W, HAN Y, LI M, et al. Vehicle mounted soil conductivity detection system based on digital oscilloscope[J]. Transactions of the CSAM, 2020, 51(S2): 395-401. | 11 | 杨文奇. 大田土壤电导率快速检测系统研究[D]. 乌鲁木齐: 新疆农业大学, 2021. | 11 | YANG W. Research on the rapid detection system of field soil electrical conductivity[D]. Urumqi: Xinjiang Agricultural University. | 12 | Geonics Limited: EM 38-MK2. [EB/OL]. [2022-12-02].. | 13 | Veris Technologies: Veris 3150[EB/OL]. [2022-12-03]. . | 14 | ESS DR. Implementing site-specific management: Map-versus sensor-based variable rate application[EB/OL].[2022-12-10]. . | 15 | Precision Planting: Precision Planting SmartFirmer[EB/OL]. [2022-11-09]. . | 16 | 唐海涛, 孟祥添, 苏循新, 等. 基于CARS算法的不同类型土壤有机质高光谱预测[J]. 农业工程学报, 2021, 37(2): 105-113. | 16 | TANG H, HENG X, SU X, et al. Hyperspectral prediction on soil organic matter of different types using CARS algorithm[J]. Transactions of the CSAE, 2021, 37(2): 105-113. | 17 | XIE S, LI Y, WANG X, et al. Research on estimation models of the spectral characteristics of soil organic matter based on the soil particle size[J]. Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, 2021, 260(2): ID 119963. | 18 | 崔玉露, 杨玮, 王炜超, 等. 基于光谱学原理的便携式土壤有机质检测仪设计与实验[J]. 农业机械学报, 2021, 52(S1): 323-328. | 18 | CUI Y, YANG W, WANG W, et al. Design and experiment of portable soil organic matter detector based on spectroscopy principle[J]. Transactions of the CSAM, 2021, 52(S1): 323-328. | 19 | 陈建国. 小麦精量播种与精准控制智能决策系统研究与设计[D]. 上海: 上海交通大学, 2019. | 19 | CHEN J. Research and design of wheat precision seeding and precision control and intelligent designed system[D]. Shangghai: Shanghai Jiao Tong University, 2019. | 20 | 杨丽, 杜兆辉, 张东兴, 等. 一种基于动态处方图的变量播种控制系统及方法: CN114568077A[P]. 2022. | 21 | 杨贵军, 李长春, 于海洋, 等. 农用无人机多传感器遥感辅助小麦育种信息获取[J]. 农业工程学报, 2015, 31(21): 184-190. | 21 | YANG G, LI C, YU H, et al. UAV based multi-load remote sensing technologies for wheat breeding information acquirement[J]. Transactions of the CSAE, 2015, 31(21): 184-190. | 22 | 孙红, 邢子正, 张智勇, 等. 基于RED-NIR的主动光源叶绿素含量检测装置设计与试验[J]. 农业机械学报, 2019, 50(S1): 175-181. | 22 | SUN H, XING Z, ZHANG Z. Design and experiment of chlorophyll content detection device for active light source based on RED-NIR[J]. Transactions of the CSAM, 2019, 50(S1): 175-181. | 23 | 林维潘, 李怀民, 倪军, 等. 基于便携式三波段作物生长监测仪的水稻长势监测[J]. 农业工程学报, 2020, 36(20): 203-208. | 23 | LIN W, LI H, NI J. Monitoring rice growth based on a portable three-band instrument for crop growth monitoring and diagnosis[J]. Transactions of the CSAE, 2020, 36(20): 203-208. | 24 | 矫雷子, 董大明, 赵贤德, 等. 基于调制近红外反射光谱的土壤养分近场遥测方法研究[J]. 智慧农业(中英文), 2020, 2(2): 59-66. | 24 | JIAO L, DONG D, ZHAO X, et al. Near-field telemetry detection of soil nutrient based on modulated near-infrared reflectance spectrum[J]. Smart Agriculture, 2020, 2(2): 59-66. | 25 | 周鹏, 李民赞, 杨玮, 等. 基于近红外漫反射测量的车载式原位土壤参数检测仪开发[J]. 光谱学与光谱分析, 2020, 40(9): 2856-2861. | 25 | ZHOU P, LI M, YANG W, et al. Development of vehicle-mounted in-situ soil parameters detector based on NIR diffuse reflection[J]. Spectroscopy and Spectral Analysis, 2020, 40(9): 2856-2861. | 26 | LUKINA E, FREEMAN K, WYNN K, et al. Nitrogen fertilization optimization algorithm based on in-season estimates of yield and plant nitrogen uptake[J]. Journal of Plant Nutrition, 2001, 24(6): 885-898. | 27 | WALSH OS, KLATT AR, SOLIE JB, et al. Use of soil moisture data for refined GreenSeeker sensor based nitrogen recommendations in winter wheat (Triticum aestivum L.)[J]. Precision Agriculture, 2013, 14(3): 343-356. | 28 | SHI Y, MAN C, WANG X. Efficiency analysis and evaluation of centrifugal variable-rate fertilizer spreading based on real-time spectral information on rice[J]. Computers and Electronics in Agriculture, 2023, 204:ID 107505. | 29 | CAO Q, MIAO Y, WANG H, et al. Non-destructive estimation of rice plant nitrogen status with Crop Circle multispectral active canopy sensor[J]. Field Crops Research, 2013, 154: 133-144. | 30 | 何雄奎. 中国精准施药技术和装备研究现状及发展建议[J]. 智慧农业(中英文), 2020, 2(1): 133-146. | 30 | HE X. Research progress and developmental recommendations on precision spraying technology and equipment in China[J]. Smart Agriculture, 2020, 2(1): 133-146. | 31 | 潘冉冉, 骆一凡, 王昌, 等. 高光谱成像的油菜和杂草分类方法[J]. 光谱学与光谱分析, 2017, 37(11): 3567-3572. | 31 | PAN R, LUO Y, WANG C, et al. Classifications of oilseed rape and weeds based on hyperspectral imaging[J]. Spectroscopy and Spectral Analysis, 2017, 37(11): 3567-3572. | 32 | 周巧黎, 马丽, 曹丽英, 等. 基于改进轻量级卷积神经网络MobileNetV3的番茄叶片病害识别[J]. 智慧农业(中英文), 2022, 4(1): 47-56. | 32 | ZHOU Q, LI M, CAO L, et al. Identification of tomato leaf diseases based on improved lightweight convolutional neural networks MobileNetV3[J]. Smart Agriculture, 2022, 4(1): 47-56. | 33 | REDDY T V, REKHA K S. Deep leaf disease prediction framework (DLDPF) with transfer learning for automatic leaf disease detection[C]// 2021 5th International Conference on Computing Methodologies and Communication (ICCMC). Piscataway, New York, USA: IEEE, 2021. | 34 | BRAVO C, MOSHOU D, WEST J, et al. Early disease detection in wheat fields using spectral reflectance[J]. Biosystems Engineering, 2003, 84(2): 137-145. | 35 | LIU Z, WU H, HUANG J. Application of neural networks to discriminate fungal infection levels in rice panicles using hyperspectral reflectance and principal components analysis[J]. Computers and Electronics in Agriculture, 2010, 72(2): 99-106. | 36 | STOORVOGEL J, KOOISTRA L, BOUMA J. Managing soil variability at different spatial scales as a basis for precision agriculture[M]. Boca Raton, Florida: CRC Press, 2015. | 37 | LI Y, YAN B, YU Y, et al. Global overview of research progress and development of precision maize planters[J]. International Journal of Agricultural and Biological Engineering, 2016, 9(1): 9-26. | 38 | PLANTINGPRECISION.Monitoring & Measurement[EB/OL].[2022-11-30]. . | 39 | 大马力农机. 能播"拐子苗"的格兰智能电驱播种机,开始在黑龙江垦区应用[EB/OL]. [2022-11-30]. . | 40 | HE X, CUI T, ZHANG D, et al. Development of an electric-driven control system for a precision planter based on a closed-loop PID algorithm[J]. Computers and Electronics in Agriculture, 2017, 136: 184-192. | 41 | HE X, DING Y, ZHANG D, et al. Development of a variable-rate seeding control system for corn planters Part I: Design and laboratory experiment[J]. Computers and Electronics in Agriculture, 2019, 162: 318-327. | 42 | HE X, ZHANG D, YANG L, et al. Design and experiment of a GPS-based turn compensation system for improving the seeding uniformity of maize planter[J]. Computers and Electronics in Agriculture, 2021, 187:ID 106250. | 43 | 廖庆喜, 邓在京, 黄海东. 高速摄影在精密排种器性能检测中的应用[J]. 华中农业大学学报, 2004(5): 570-573. | 43 | LIAO Q, DENG Z, HUANG H. Application of the high speed photography checking the precision metering performances[J]. Journal of Huazhong Agricultural, 2004(5): 570-573. | 44 | 史智兴, 高焕文. 玉米精播机排种监测报警装置[J]. 中国农业大学学报, 2003(2): 18-20. | 44 | SHI Z, GAO H. A seeding monitoring & alarming device for corn precision seeder[J]. Journal of China Agricultural University, 2003(2): 18-20. | 45 | 周利明, 王书茂, 张小超, 等. 基于电容信号的玉米播种机排种性能监测系统[J]. 农业工程学报, 2012, 28(13): 16-21. | 45 | ZHOU L, WANG S, ZHANG X, et al. Seed monitoring system for corn planter based on capacitance signal[J]. Transactions of the CSAE, 2012, 28(13): 16-21. | 46 | 赵博, 樊学谦, 周利明, 等. 气流输送播种机压电式流量传感器设计与试验[J]. 农业机械学报, 2020, 51(8): 55-61. | 46 | ZHAO B, FAN X, ZHOU L, et al. Design and test of piezoelectric flow sensor for pneumatic seeder[J]. Transactions of the CSAM, 2020, 51(8): 55-61. | 47 | 付卫强, 董建军, 梅鹤波, 等. 玉米播种单体下压力控制系统设计与试验[J]. 农业机械学报, 2018, 49(6): 68-77. | 47 | FU W, DONG J, MEI H, et al. Design and test of maize seeding unit downforce control system[J]. Transactions of the CSAM, 2018, 49(6): 68-77. | 48 | 高原源, 王秀, 杨硕, 等. 播种机气动式下压力控制系统设计与试验[J]. 农业机械学报, 2019, 50(7): 19-29. | 48 | GAO Y, WANG X, YANG S, et al. Design and test of pneumatic downforce control system for planting[J]. Transactions of the CSAM, 2019, 50(7): 19-29. | 49 | LIU Q, CUI T, ZHANG D, et al. Design and experimental study of seed precise delivery mechanism for high-speed maize planter[J]. International Journal of Agricultural and Biological Engineering, 2018, 11(4): 81-87. | 50 | AMAZONE. 140 years of Amazone and 140 years of innovation[EB/OL]. [2022-12-07]. . | 51 | 雷小龙, 廖宜涛, 张闻宇, 等. 油麦兼用气送式集排器输种管道气固两相流仿真与试验[J]. 农业机械学报, 2017, 48(3): 57-68. | 51 | LEI X, LIAO Y, ZHANG W, et al. Simulation and experiment of gas-solid flow in seed conveying tube for rapeseed and wheat[J]. Transactions of the CSAM, 2017, 48(3): 57-68. | 52 | 张晓辉, 王永振, 仉利, 等. 小麦气力集排器排种分配系统设计与试验[J]. 农业机械学报, 2018, 49(3): 59-67. | 52 | ZHANG X, WANG Y, ZHANG L. Design and experiment of wheat pneumatic centralized seeding distributing system[J]. Transactions of the CSAM, 2018, 49(3): 59-67. | 53 | 袁文胜, 冯玉岗, 金诚谦, 等. 播种机播种量、施肥量自动标定装置及方法: CN202011541466.4[P]. 2021-04-20. | 54 | 孟志军, 赵春江, 刘卉, 等. 基于处方图的变量施肥作业系统设计与实现[J]. 江苏大学学报(自然科学版), 2009, 30(4): 338-342. | 54 | MENG Z, ZHAO C, LIU H, et al. Development and performance assessment of map-based variable rate granule application system[J]. Journal of Jiangsu University(Natural Science Edition), 2009, 30(4): 338-342. | 55 | 付卫强, 孟志军, 黄文倩, 等. 基于CAN总线的变量施肥控制系统[J]. 农业工程学报, 2008, 24(S2): 127-132. | 55 | FU W, MENG Z, HUANG W, et al. Variable rate fertilizer control system based on CAN bus[J]. Transactions of the CSAE, 2008, 24(S2): 127-132. | 56 | 张季琴, 刘刚, 胡号, 等. 排肥单体独立控制的双变量施肥控制系统研制[J]. 农业工程学报, 2021, 37(10): 38-45. | 56 | ZHANG J, LIU G, HU H, et al. Development of bivariate fertilizer control system via independent control of fertilizing unit[J]. Transactions of the CSAE, 2021, 37(10): 38-45. | 57 | 刘刚, 胡号, 黄家运, 等. 变量施肥滞后时间检测与位置修正方法研究[J]. 农业机械学报, 2021, 52(S1): 74-80. | 57 | LIU G, HU H, HUANG J, et al. Lag Time detection and position correction method of variable rate fertilization[J]. Transactions of the CSAM, 2021, 52(S1): 74-80. | 58 | ZHANG J, LIU G, HUANG J, et al. A study on the time lag and compensation of a variable-rate fertilizer applicator[J]. Applied Engineering in Agriculture, 2021, 37(1): 43-52. | 59 | 王大可, 衣淑娟, 赵雪, 等. 气吸精播机施肥量无线计量监测系统的研究[J]. 农机化研究, 2017, 39(3): 84-88. | 59 | WANG D, YI S, ZHAO X, et al. Research on precise seeder wireless measurement monitoring system[J]. Journal of Agricultural Mechanization Research, 2017, 39(3): 84-88. | 60 | 杨柳, 杨莎, 杨璎珞. 一种电动玉米精量播种机施肥监测装置设计[J]. 南方农机, 2022, 53(15): 9-11. | 61 | 陈金成, 张惠, 汤智辉, 等. 分层施肥机作业监测系统的设计与田间试验[J]. 江苏农业科学, 2021, 49(20): 205-210. | 61 | CHEN J, ZHANG H, TANG Z, et al. Design and field experiment of operation monitoring system of layered fertilization device[J]. Jiangsu Agricultural Sciences, 2021, 49(20): 205-210. | 62 | 孙文斌, 王荣, 高荣华, 等. 基于可见光谱和改进注意力的农作物病害识别[J]. 光谱学与光谱分析, 2022, 42(5): 1572-1580. | 62 | SUN W, WANG R, GAO R, et al. Crop disease recognition based on visible spectrum and improved attention module[J]. Spectroscopy and Spectral Analysis, 2022, 42(5): 1572-1580. | 63 | TRONTHMANNA W, RUCKELSHAUSENA A, HERTZBERG J, et al. Plant classification with In-Field-Labeling for crop/weed discrimination using spectral features and 3D surface features from a multi-wavelength laser line profile system[J]. Computers and Electronics in Agriculture, 2017, (134): 79-93. | 64 | CAO Y, YUAN P, XU H, et al. Detecting asymptomatic infections of rice bacterial leaf blight using hyperspectral imaging and 3-dimensional convolutional neural network with spectral dilated convolution[J]. Frontiers in Plant Science, 2022, 13: ID 963170. | 65 | SPEEDTUBE.The SprayKit: Two worksteps in one[EB/OL]. [2022-11-19]. . | 66 | MEGA米格. 悬挂式喷雾机[EB/OL]. 2022-11-28.. | 67 | CHEN Y, ZHANG S, MAO E, et al. Height stability control of a large sprayer body based on air suspension using the sliding mode approach[J]. Information Processing in Agriculture, 2020, 7(1): 20-29. | 68 | 张春凤, 翟长远, 赵学观, 等. 对靶喷药系统压力波动特性的试验研究[J]. 农业工程学报, 2022, 38(18): 31-39. | 68 | ZHANG C, ZHAI C, ZHAO X, et al. Experimental study on the pressure fluctuation characteristics of target spray system[J]. Transactions of the CSAE, 2022, 38(18): 31-39. | 69 | JEON H, ZHU H, DERKSEN R, et al. Evaluation of ultrasonic sensor for variable-rate spray applications[J]. Computers and Electronics in Agriculture, 2011, 75(1): 213-221. | 70 | WEI D, HE X, DING W. Droplet size and spray pattern characteristics of PWM-based continuously variable spray[J]. International Journal of Agricultural and Biological Engineering, 2009, 2(1): 8-18. | 71 | WEN S, HAN J, NING Z, et al. Numerical analysis and validation of spray distributions disturbed by quad-rotor drone wake at different flight speeds[J]. Computers and Electronics in Agriculture, 2019, 166: ID 105036. | 72 | 朱昱, 潘耀忠, 张杜娟. 基于深度卷积网络和分水岭分割的耕地地块识别方法[J]. 地球信息科学学报, 2022, 24(12): 2389-2403. | 72 | ZHU Y, PAN Y, ZHANG D. An agriculture parcel identification method based on convolutional neural network and watershed segmentation[J]. Journal of Geo-information Science, 2022, 24(12): 2389-2403. | 73 | 郑明雪, 罗治情, 陈娉婷, 等. 基于改进Mean Shift的无人机农业应用遥感影像地块边界提取[J]. 湖北农业科学, 2021, 60(23): 153-156. | 73 | ZHENG M, LUO Z, CHEN P, et al. Farmland boundary extraction from UAV remote sensing images for agricultural applications based on improved Mean Shift[J]. Hubei Agricultural Sciences, 2021, 60(23): 153-156. | 74 | 吴晗, 林晓龙, 李曦嵘, 等. 面向农业应用的无人机遥感影像地块边界提取[J]. 计算机应用, 2019, 39(1): 298-304. | 74 | WU H, LIN X, LI X, et al. Land parcel boundary extraction of UAV remote sensing image in agricultural application[J]. Journal of Computer Applications, 2019, 39(1): 298-304. | 75 | 宋建涛, 李大军, 郭丙轩. 基于遥感影像的地块边界半自动提取[J]. 北京测绘, 2019, 33(10): 1171-1175. | 75 | SONG J, LI D, GUO B. Semi-automatic boundary extraction based on gaussian model[J]. Beijing Surveying and Mapping, 2019, 33(10): 1171-1175. | 76 | 刘东, 欧阳安, 陈聪, 等. 基于归一化植被指数的农田边界识别方法[J]. 江苏农业科学, 2022, 50(11): 196-201. | 76 | LIU D, OUYANG A, CHEN C, et al. Farmland boundary recognition method based on NDVI[J]. Jiangsu Agricultural Sciences, 2022, 50(11): 196-201. | 77 | ZHANG M, LI L, WANG A, et al. A novel farmland boundaries extraction and obstacle detection method based on unmanned aerial vehicle[C]// 2019 ASABE Annual International Meeting. St. Joseph, Michigan, USA: the American Society of Agricultural and Biological Engineers, 2019. | 78 | 王侨, 刘卉, 杨鹏树, 等. 基于机器视觉的农田地头边界线检测方法[J]. 农业机械学报, 2020, 51(5): 18-27. | 78 | WANG Q, LIU H, YANG P, et al. Detection method of headland boundary line based on machine vision[J]. Transactions of the CSAM, 2020, 51(5): 18-27. | 79 | 乔榆杰, 杨鹏树, 孟志军, 等. 面向自动驾驶农机的农田地头边界线检测系统[J]. 农机化研究, 2022, 44(11): 24-30. | 79 | QIAO Y, YANG P, MENG Z, et al. Detection system of headland boundary line based on machine vision[J]. Journal of Agricultural Mechanization Research, 2022, 44(11): 24-30. | 80 | 阚韬, 辜彬. 农田边界检测方法及装置: CN108596937A[P]. 2018. | 81 | JIANG G, WANG X, WANG Z, et al. Wheat rows detection at the early growth stage based on Hough transform and vanishing point[J]. Computers and Electronics in Agriculture, 2016, 123: 211-223. | 82 | 姜国权, 杨小亚, 王志衡, 等. 基于图像特征点粒子群聚类算法的麦田作物行检测[J]. 农业工程学报, 2017, 33(11): 165-170. | 82 | JIANG G, YANG X, WANG Z, et al. Crop rows detection based on image characteristic point and particle swarm optimization-clustering algorithm[J]. Transactions of the CSAE, 2017, 33(11): 165-170. | 83 | 孟庆宽, 刘刚, 张漫, 等. 基于线性相关系数约束的作物行中心线检测方法[J]. 农业机械学报, 2013, 44(S1): 216-223. | 83 | MENG Q, LIU G, ZHANG M, et al. Crop rows detection based on constraint of liner correlation coefficient[J]. Transactions of the CSAM, 2013, 44(S1): 216-223. | 84 | 王侨, 孟志军, 付卫强, 等. 基于机器视觉的玉米苗期多条作物行线检测算法[J]. 农业机械学报, 2021, 52(4): 208-220. | 84 | WANG Q, MENG Z, FU W. Detection algorithm of multiple crop row lines based on machine vision in maize seedling stage[J]. Transactions of the CSAM, 2021, 52(4): 208-220. | 85 | CHOI K, HAN S, HAN S, et al. Morphology-based guidance line extraction for an autonomous weeding robot in paddy fields[J]. Computers and Electronics in Agriculture, 2015, 113: 266-274. | 86 | HU W, JIANG P, XIAO F, et al. Identifying rice seedling bands based on slope virtualization clustering[J]. Computers and Electronics in Agriculture, 2020, 175: ID 105470. | 87 | ZHAI Z, ZHU Z, DU Y, et al. Multi-crop-row detection algorithm based on binocular vision[J]. Biosystems Engineering, 2016, 150: 89-103. | 88 | GASPARINO M, HIGUTI V, VELASQUEZ A, et al. Improved localization in a corn crop row using a rotated laser rangefinder for three-dimensional data acquisition[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2020, 42(11): 1-10. | 89 | YANG L, NOGUCHI N. Human detection for a robot tractor using omni-directional stereo vision[J]. Computers and Electronics in Agriculture, 2012, 89: 116-125. | 90 | LI Y, LIDA M, SUYAMA T, et al. Implementation of deep-learning algorithm for obstacle detection and collision avoidance for robotic harvester[J]. Computers and Electronics in Agriculture, 2020 174: ID 105499. | 91 | 尚业华, 张光强, 孟志军, 等. 基于欧氏聚类的三维激光点云田间障碍物检测方法[J]. 农业机械学报, 2022, 53(1): 23-32. | 91 | SHANG Y, ZHANG G, MENG Z, et al. Field obstacle detection method of 3D Lidar point cloud based on euclidean clustering[J]. Transactions of the CSAM, 2022, 53(1): 23-32. | 92 | 郎朗, 冯晓蓉, 刘浪. 基于LiDAR的农田地形环境三维重建方法设计与研究[J]. 中国农机化学报, 2020, 41(1): 155-160. | 92 | LANG L, FENG X, LIU L. Design and research of three-dimensional reconstruction method of farmland terrain environment based on LiDAR[J]. Journal of Chinese Agricultural Mechanization, 2020, 41(1): 155-160. | 93 | ZENG L, FENG J, HE L. Semantic segmentation of sparse 3D point cloud based on geometrical features for trellis-structured apple orchard[J]. Biosystems Engineering, 2020, 196, 46-55. | 94 | ROVIRA-MAS F, REID J, HAN S. Obstacle detection using stereo vision to enhance safety of autonomous machines[J]. Transactions of the ASAE, 2005, 48(6): 2389-2397. | 95 | YIN X, NOGUCHI N, ISHII K. Development of an obstacle avoidance system for a field robot using a 3D camera[J]. Engineering in Agriculture, Environment and Food, 2013, 6(2): 41-47. | 96 | ADAM K. Precision guidance system for agricultural vehicles: EP3534684B1[P]. 2021. | 97 | 张健. 农机自动驾驶路径规划及控制方法[D]. 哈尔滨: 哈尔滨理工大学, 2021. | 97 | ZHANG J. Path planning and control method for automatic driving of agricultural machinery[D]. Harbin: Harbin University of Science and Technolog, 2021. | 98 | NILSSON R S, ZHOU K. Method and bench-marking framework for coverage path planning in arable farming[J]. Biosystems Engineering, 2020, 198: 248-265. | 99 | 林乙蘅. 基于多源信息融合的智能农机路径规划和路径跟踪研究[D]. 南京: 东南大学, 2018. | 99 | LIN Y. Path planning and path tracking of intelligent agricultural vehicle based on multi-source information fusion[D]. Nanjing: Southeast University, 2018. | 100 | 唐小涛. 智能水稻穴直播机导航控制系统的研究[D]. 上海: 上海交通大学, 2018. | 100 | TANG X. Research on navigation control system of rice planter[D]. Shanghai: Shanghai JiaoTong University, 2018. | 101 | BOCHTIS D, SORENSEN C, BUSATO P, et al. Advances in agricultural machinery management: A review[J]. Biosystems Engineering, 2014, 126: 69-81. | 102 | 罗承铭, 熊陈文, 黄小毛, 等. 四边形田块下油菜联合收获机全覆盖作业路径规划算法[J]. 农业工程学报, 2021, 37(9): 140-148. | 102 | LUO C, XIONG C, HUANG X. Coverage operation path planning algorithms for the rape combine harvester in quadrilateral fields[J]. Transactions of the CSAE, 2021, 37(9): 140-148. | 103 | PLESSEN M G, BEMPORAD A. Shortest path computations under trajectory constraints for ground vehicles within agricultural fields[C]// IEEE International Conference on Intelligent Transportation Systems. Piscataway, New York, USA: IEEE, 2016: 1733-1738. | 104 | KHAN A, NOREEN I, RYU H, et al. Online complete coverage path planning using two-way proximity search[J]. Intelligent Service Robotics, 2017, (3): 229-240. | 105 | LIU H, MA K, HUANG W, et al. Sensor-based complete coverage path planning in dynamic environment for cleaning robot[J]. CAAI Transactions on Intelligence Technology, 2018, (1): 65-72. | 106 | 袁加红. 水稻插秧机最优覆盖路径规划研究[D]. 合肥: 安徽农业大学, 2016. | 106 | YUAN J. Research on optimal complete coverage path planning for rice transplanter[D]. Hefei: Anhui Agricultural University, 2016. | 107 | WANG H, NOGUCHI N. Adaptive turning control for an agricultural robot tractor[J]. International Journal of Agricultural and Biological Engineering, 2018, 11(6): 113-119. | 108 | 翟卫欣, 王东旭, 陈智博, 等. 无人驾驶农机自主作业路径规划方法[J]. 农业工程学报, 2021, 37(16): 1-7. | 108 | ZHAI W, WANG D, CHEN Z, et al. Autonomous operation path planning method for unmanned agricultural machinery[J]. Transactions of the CSAE, 2021, 37(16): 1-7. | 109 | 刘一帆, 施光林, 陈耀峰, 等. 基于纯跟踪模型的模糊路径跟踪控制方法[J]. 机械设计与研究, 2022, 38(3): 136-140. | 109 | LIU Y, SHI G, CHEN Y, et al. Fuzzy path following control method based on pure pursuit model[J]. Machine Design & Research, 2022, 38(3): 136-140. | 110 | NAGASAKA Y, SAITO H, TAMAKIK, et al. An autonomous rice transplanter guided by global positioning system and inertial measurement unit[J]. Journal of Field Robotics, 2009, (No.6-7): 537-548. | 111 | NETTO M, BLOSSEVILLE J, LUSETTI B, et al. A new robust control system with optimized use of the lane detection data for vehicle full lateral control under strong curvatures[C]// 2006 IEEE Intelligent Transportation Systems Conference (ITSC 2006). Piscataway, New York, USA: IEEE, 2006. | 112 | AL-MAYYAHI A, WANG W, BIRCH P, et al. Design of fractional-order controller for trajectory tracking control of a non-holonomic autonomous ground vehicle[J]. Journal of Control, Automation and Electrical Systems, 2016(1): 29-42. | 113 | GARCíA C E, PRETT D M, Morari M. Model predictive control: Theory and practice—A survey[J]. Automatica, 1989, 25(3): 335-348. | 114 | WANG H, NOGUCHI N. Real-time states estimation of a farm tractor using dynamic mode decomposition[J]. GPS Solutions, 2021, 25(1): 1-12. | 115 | 张万枝, 白文静, 吕钊钦, 等. 线性时变模型预测控制器提高农业车辆导航路径自动跟踪精度[J]. 农业工程学报, 2017, 33(13): 104-111. | 115 | ZHANG W, BAI W, LYU Z, et al. Linear time-varying model predictive controller improving precision of navigation path automatic tracking for agricultural vehicle[J]. Transactions of the CSAE, 2017, 33(13): 104-111. | 116 | WANG H, NIU W, FU W, et al. A low-cost tractor navigation system with changing speed adaptability[C]//2021 33rd Chinese Control and Decision Conference (CCDC). Piscataway, New York, USA: IEEE, 2021. | 117 | WU G, TAN Y, ZHENG Y, et al. Walking goal line detection based on DM6437 on harvesting robot[C]// International Conference on Computer and Computing Technologies in Agriculture. Berlin, German: Springer, 2011. | 118 | ZHAO T, NING N, YANG L, et al. Development of uncut crop edge detection system based on laser rangefinder for combine harvesters[J]. International Journal of Agricultural and Biological Engineering, 2016, (2): 21-28. | 119 | ZHANG Z, CAO R, PENG C, et al. Cut-edge detection method for rice harvesting based on machine vision[J]. Agronomy, 2020, 10(4): ID 590. | 120 | JIANG W, WANG P, CAO Q. Navigation path curve extraction method based on depth image for combine harvester[C]// 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA). Piscataway, New York, USA: IEEE, 2020. | 121 | SNIDER JM. Automatic steering methods for autonomous automobile path tracking[EB/OL].[2022-11-08].. | 122 | COEN T, VANRENTERGHEM A, SAEYS W, et al. Autopilot for a combine harvester[J]. Computers and Electronics in Agriculture, 2008, 63(1): 57-64. | 123 | 赵腾. 基于激光扫描的联合收割机自动导航方法研究[D]. 杨凌: 西北农林科技大学, 2017. | 123 | ZHAO T. Development of automatic navigation method for combine harvester based on laser scanner[D]. Yangling: Northwest A&F University, 2017. | 124 | 王立辉, 石佳晨, 王乐刚, 等. 智能收获机定位和自适应路径追踪方法[J]. 导航定位学报, 2020, 8(6): 29-36. | 124 | WANG L, SHI J, WANG L. A location and adaptive path tracking methods for intelligent harvesters[J]. Journal of Navigation and Positioning, 2020, 8(6): 29-36. | 125 | LIDA M, KUDOU M, ONO K, et al. Automatic following control for agricultural vehicle[C]// 6th International Workshop on Advanced Motion Control. Piscataway, New York, USA: IEEE, 2000. | 126 | NOGUCHI N, WILL J, REID J, et al. Development of a master-slave robot system for farm operations[J]. Computers and Electronics in Agriculture, 2004(1): 1-19. | 127 | LI S, ZHANG M, WANG N, et al. Intelligent scheduling method for multi-machine cooperative operation based on NSGA-III and improved ant colony algorithm[J]. Computers and Electronics in Agriculture, 2023, 204: ID 107532. | 128 | 宫金良, 王伟, 张彦斐, 等. 基于农田环境的农业机器人群协同作业策略[J]. 农业工程学报, 2021, 37(2): 11-19. | 128 | GONG J, WANG W, ZHANG Y, et al. Cooperative working strategy for agricultural robot groups based on farmland environment[J]. Transactions of the CSAE, 2021, 37(2): 11-19. | 129 | 姚竟发, 滕桂法, 霍利民, 等. 联合收割机多机协同作业路径优化[J]. 农业工程学报, 2019, 35(17): 12-18. | 129 | YAO J, TENG J, HUO L, et al. Optimization of cooperative operation path for multiple combine harvesters without conflict[J]. Transactions of the CSAE, 2019, 35(17): 12-18. | 130 | QIN J, WANG W, MAO W, et al. Research on a map-based cooperative navigation system for spraying–dosing robot group[J]. Agronomy, 2022, 12(12): ID 314. | 131 | ZHANG P, QIAO J, ZHANG H, et al. Path planning and tracking for agricultural master-slave robot system[C]// International Conference on Computer and Communication Technologies in Agriculture Engineering. Piscataway, New York, USA: IEEE, 2010. | 132 | SHOJAEI K, ABDOLMALEKI M. Saturated observer‐based adaptive neural network leader‐following control of N tractors with n‐trailers with a guaranteed performance[J]. International Journal of Adaptive Control and Signal Processing, 2021, 35(1): 15-37. | 133 | MOOREHEAD S, WELLINGTON C, GILMORE B, et al. Automating orchards: A system of autonomous tractors for orchard maintenance[C]// IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) Workshop on Agricultural Robots. Piscataway, New York, USA: IEEE, 2012. | 134 | ZHANG X, GEIMER M, NOACK P, et al. Development of an intelligent master-slave system between agricultural vehicles[C]// IEEE Intelligent Vehicles Symposium. Piscataway, New York, USA: IEEE, 2010. | 135 | ZHANG C, NOGUCHI N, YANG L, et al. Leader–follower system using two robot tractors to improve work efficiency[J]. Computers and Electronics in Agriculture, 2016, 121: 269-281. | 136 | LUO C, MOHSENIMANESH A, LAGU? C, et al. Synchronous tracking control for agricultural wide-span implement carrier (WSIC)[J]. Transactions of the ASABE, 2018(3): 873-883. | 137 | LI S, XU H, JI Y, et al. Development of a following agricultural machinery automatic navigation system[J]. Computers and Electronics in Agriculture, 2019, 158: 335-344. | 138 | MAO W, LIU H, HAO W, et al. Development of a combined orchard harvesting robot navigation system[J]. Remote Sensing, 2022, 3: ID 675. | 139 | 白晓平, 胡静涛, 王卓. 基于视觉伺服的联合收割机群协同导航从机定位方法[J]. 农业工程学报, 2016, 32(24): 59-68. | 139 | BAI X, HU J, WANG Z. Slave positioning method for cooperative navigation of combine harvester group based on visual servo[J]. Transactions of the CSAE, 2016, 32(24): 59-68. | 140 | 白晓平, 王卓, 胡静涛, 等. 基于领航-跟随结构的联合收获机群协同导航控制方法[J]. 农业机械学报, 2017, 48(7): 14-21. | 140 | BAI X, WANG Z, HU J, et al. Harvester group corporative navigation method based on leader-follower structure[J]. Transactions of the CSAM, 2017, 48(7): 14-21. | 141 | GARKUHA S, SKAZHENNIK M, CHIZHIKOV V, et al. Analysis of the use of a combine harvester equipped with a precision farming system in rice growing conditions[J]. IOP Conference Series: Materials Science and Engineering, 2020: ID 012027. | 142 | SENTS N. Case ih unveils afs connect magnum tractor series[J]. Successful Farming, 2019, 117(6): 24. | 143 | THOMASSON J, BAILLIE C, ANTILLE D, et al. A review of the state of the art in agricultural automation. Part II: On-farm agricultural communications and connectivity[C]// 2018 ASABE Annual International Meeting. St. Joseph, Michigan, USA: the American Society of Agricultural and Biological Engineers, 2018. | 144 | CHAUDHARY R, PANDEY J, PANDEY P, et al. Case study of Internet of Things in area of agriculture, 'AGCO's Fuse Technology's' 'Connected Farm Services'[C]// 2015 International Conference on Green Computing and Internet of Things (ICGCIoT). Piscataway, New York, USA: IEEE, 2015. | 145 | MUGGE P, GUDERGAN G, MUGGEP, et al. The gap between the practice and theory of digital transformation[C]// The 50th Hawaiian International Conference of System Science. Piscataway, New York, USA: IEEE, 2017. | 146 | 王培, 孟志军, 安晓飞, 等. 拖拉机功率与深松作业效率关系研究[J]. 农业机械学报, 2019, 50(S1): 87-90. | 146 | WANG P, MENG Z, AN X. Relationship between agricultural machinery power and agricultural machinery subsoiling operation[J]. Transactions of the CSAM, 2019, 50(S1): 87-90. | 147 | 孟志军, 武广伟, 魏学礼, 等. 农机作业监管信息化技术应用与展望[J]. 农机科技推广, 2019(5): 9-11. | 148 | 冀福华. 农机田间作业大数据处理关键技术研究及平台构建[D]. 北京: 中国农业机械化科学研究院, 2020. | 148 | JI F. Research on key technology and platform construction of agricultural machinery field operation big data processing[D]. Beijing: Chinese Academy of Agricultural Mechanization Sciences, 2020. | 149 | 崔征泽. 农机监测管理系统的设计与实现[D]. 哈尔滨: 哈尔滨工业大学, 2019. | 149 | CUI Z. Design and implementation of agricultural machinery monitoring management system[D]. Harbin: Harbin Institute of Technology, 2019. | 150 | 房黎明. 雷沃阿波斯发布农机行业首个智慧农业解决方案iFarming[J]. 农业机械, 2016, (11): 62-63. |
|