Smart Agriculture ›› 2023, Vol. 5 ›› Issue (2): 82-92.doi: 10.12133/j.smartag.SA202304004
• Topic--Machine Vision and Agricultural Intelligent Perception • Previous Articles Next Articles
SHI Jiefeng1(), HUANG Wei1, FAN Xieyang1, LI Xiuhua1,2(), LU Yangxu1, JIANG Zhuhui3, WANG Zeping4, LUO Wei1, ZHANG Muqing2
Received:
2023-04-08
Online:
2023-06-30
corresponding author:
LI Xiuhua, E-mail:lixh@gxu.edu.cn
About author:
SHI Jiefeng, E-mail:1500807980@qq.com
Supported by:
CLC Number:
SHI Jiefeng, HUANG Wei, FAN Xieyang, LI Xiuhua, LU Yangxu, JIANG Zhuhui, WANG Zeping, LUO Wei, ZHANG Muqing. Yield Prediction Models in Guangxi Sugarcane Planting Regions Based on Machine Learning Methods[J]. Smart Agriculture, 2023, 5(2): 82-92.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202304004
Table 3
The sensitive meteorological factors and key time spans found for the five planting regions
蔗区 | 气象因子 | 与产量的相关系数 | 影响时段 |
---|---|---|---|
蔗区1 | 日照时数 | -0.766 | 10—11月 |
平均2分钟风速 | -0.617 | 10—11月 | |
最大风速 | -0.583 | 4—5月 | |
最小相对湿度 | 0.473 | 11月 | |
平均水气压 | 0.454 | 6月 | |
蔗区2 | 平均水气压 | 0.663 | 2—3月 |
最低气温 | 0.648 | 2—3月 | |
最低气压 | -0.606 | 3月 | |
平均气温 | 0.596 | 2—4月 | |
20时至第二天20时降水量 | 0.527 | 8月 | |
蔗区3 | 20时至第二天20时降水量 | 0.776 | 8—9月 |
日照时数 | -0.555 | 8—9月 | |
最低气温 | 0.542 | 3月 | |
平均水气压 | 0.487 | 3月 | |
最高气温 | -0.465 | 8—11月 | |
蔗区4 | 最高气温 | -0.672 | 8—12月 |
平均气温 | -0.570 | 7—12月 | |
20时至第二天20时降水量 | 0.657 | 3—12月 | |
日照时数 | 0.502 | 5月 | |
最低气温 | -0.448 | 8月 | |
蔗区5 | 平均水气压 | 0.829 | 6—8月 |
平均相对湿度 | 0.715 | 2—10月 | |
最低气压 | -0.697 | 2—3月 | |
最高气压 | -0.696 | 2—3月 | |
20时至第二天20时降水量 | -0.437 | 6—7月 |
1 | 李威, 顾峰雪. 区域作物产量的模型预测研究[J]. 农业展望, 2020, 16(3): 104-111. |
LI W, GU F X. Prediction of regional crop yield based on model[J]. Agricultural outlook, 2020, 16(3): 104-111. | |
2 | 农业农村部市场预警专家委员会. 中国农业展望报告2019—2028[M]. 北京: 中国农业科学技术出版社, 2019. |
Expert Committee on Market Warning of Ministry of Agriculture and Rural Affairs. China agricultural outlook 2019-2028[M]. Beijing: China Agricultural Science and Technology Press, 2019. | |
3 | 高俊杰, 袁业溶, 梁应. 高要区早稻产量预测模型的建立[J]. 广东气象, 2022, 44(2): 50-52. |
GAO J J, YUAN Y R, LIANG Y. Establishment of early rice yield prediction model in Gaoyao area[J]. Guangdong meteorology, 2022, 44(2): 50-52. | |
4 | 于珍珍, 邹华芬, 于德水, 等. 融合田间水热因子的甘蔗产量GA-BP预测模型[J]. 农业机械学报, 2022, 53(10): 277-283. |
YU Z Z, ZOU H F, YU D S, et al. Sugarcane yield GA-BP prediction model incorporating field water and heat factors[J]. Transactions of the Chinese society for agricultural machinery, 2022, 53(10): 277-283. | |
5 | 陈上. 基于历史气象数据和CERES-maize模型的玉米产量预测及灌溉决策方法[D]. 杨凌: 西北农林科技大学, 2017. |
CHEN S. Yield forecast and irrigation decision for maize based on historical weather data and the Ceres-maize model[D]. Yangling: Northwest A & F University, 2017. | |
6 | 王二虎, 宋晓. 基于气象因子的开封市花生产量预测模型[J]. 陕西农业科学, 2012, 58(4): 31-33. |
WANG E H, SONG X. Prediction model of peanut yield in Kaifeng city based on meteorological factors[J]. Shaanxi journal of agricultural sciences, 2012, 58(4): 31-33. | |
7 | 何虹, 王巧娟, 李亮, 等. 宁夏引黄灌区玉米趋势产量与气候产量分离方法研究[J]. 灌溉排水学报, 2022, 41(4): 30-39. |
HE H, WANG Q J, LI L, et al. Separating the effect of meteorology on maize yield from the impact of other factors in the Yellow River-water irrigated regions in Ningxia of China[J]. Journal of irrigation and drainage, 2022, 41(4): 30-39. | |
8 | 顾雅文, 姚艳丽, 傅玮东. 基于关键气象因子的阿克苏地区苹果产量预测模型[J]. 新疆农业科技, 2021(2): 22-24. |
GU Y W, YAO Y L, FU W D. Prediction model of apple yield in Aksu region based on key meteorological factors[J]. Xinjiang agricultural science and technology, 2021(2): 22-24. | |
9 | 何修君. 基于机器学习的玉米产量预测模型研究[D]. 长春: 吉林农业大学, 2021. |
HE X J. Research on maize yield prediction model based on machine learning[D]. Changchun: Jilin Agricultural University, 2021. | |
10 | 李严明. 基于机器学习的气象因素对小麦产量影响的分析预测[D]. 郑州: 河南农业大学, 2019. |
LI Y M. Wheat yield forecasting: A machine learning approach based on meteorological factors[D]. Zhengzhou: Henan Agricultural University, 2019. | |
11 | ZHAO Y X, XIAO D P, BAI H Z, et al. The prediction of wheat yield in the North China plain by coupling crop model with machine learning algorithms[J]. Agriculture, 2022, 13(1): ID 99. |
12 | CROCI M, IMPOLLONIA G, MERONI M, et al. Dynamic maize yield predictions using machine learning on multi-source data[J]. Remote sensing, 2022, 15(1): ID 100. |
13 | OIKONOMIDIS A, CATAL C, KASSAHUN A. Hybrid deep learning-based models for crop yield prediction[J]. Applied artificial intelligence, 2022, 36(1): 1-18. |
14 | DI Y, GAO M F, FENG F K, et al. A new framework for winter wheat yield prediction integrating deep learning and Bayesian optimization[J]. Agronomy, 2022, 12(12): ID 3194. |
15 | BURDETT H, WELLEN C. Statistical and machine learning methods for crop yield prediction in the context of precision agriculture[J]. Precision agriculture, 2022, 23(5): 1553-1574. |
16 | QU L S, ZHU Q A, ZHU C F, et al. 2022. Monthly precipitation data set with 1 km resolution in China from 1960 to 2020[DB/OL]. Science Data Bank. [2022-04-15]. . |
17 | 黄海迅, 周筠珺, 曾勇, 等. 广西贵港甘蔗产量气象预报[J]. 成都信息工程大学学报, 2020, 35(5): 554-559. |
HUANG H X, ZHOU Y J, ZENG Y, et al. Meteorological forecast of sugarcane production in Guigang, Guangxi[J]. Journal of Chengdu university of information technology, 2020, 35(5): 554-559. | |
18 | 许鑫, 马兆务, 熊淑萍, 等. 基于气候年型的河南省冬小麦产量预测[J]. 中国农业科技导报, 2022, 24(2): 136-144. |
XU X, MA Z W, XIONG S P, et al. Wheat yield forecast in Henan Province based on climate year type[J]. Journal of agricultural science and technology, 2022, 24(2): 136-144. | |
19 | 王桂芝, 陆金帅, 陈克垚, 等. 基于HP滤波的气候产量分离方法探讨[J]. 中国农业气象, 2014, 35(2): 195-199. |
WANG G Z, LU J S, CHEN K Y, et al. Exploration of method in separating climatic output based on HP filter[J]. Chinese journal of agrometeorology, 2014, 35(2): 195-199. | |
20 | ZHOU C H, WU Z Y, LIU C. A study on quality prediction for smart manufacturing based on the optimized BP-AdaBoost model[C]// 2019 IEEE International Conference on Smart Manufacturing, Industrial & Logistics Engineering (SMILE). Piscataway, NJ, USA: IEEE, 2020: 1-3. |
21 | KAZEMI A, BOOSTANI R, ODEH M, et al. Two-layer SVM, towards deep statistical learning[C]// 2022 International Engineering Conference on Electrical, Energy, and Artificial Intelligence (EICEEAI). Piscataway, NJ, USA: IEEE, 2022. |
22 | MIAH M O, KHAN S S, SHATABDA S, et al. Improving detection accuracy for imbalanced network intrusion classification using cluster-based under-sampling with random forests[C]// 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT). Piscataway, NJ, USA: IEEE, 2019: 1-5. |
23 | AKANDEH A, SALEM F M. Slim LSTM networks: Lstm_6 and LSTM_C6[C]// 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS). Piscataway, NJ, USA: IEEE, 2020: 630-633. |
24 | 欧钊荣, 谭宗琨, 何燕, 等. 影响我国甘蔗主产区甘蔗产量的关键气象因子及其丰欠指标[J]. 安徽农业科学, 2008, 36(24): 10407-10410, 10415. |
OU Z R, TAN Z K, HE Y, et al. The key meteorological factors affecting the sugarcane yield in major production areas in China and their high-low yield indices[J]. Journal of Anhui agricultural sciences, 2008, 36(24): 10407-10410, 10415. | |
25 | 李志强, 张香燕, 田华东. 应用HP滤波的卫星遥测数据预测方法[J]. 航天器工程, 2021, 30(4): 23-30. |
LI Z Q, ZHANG X Y, TIAN H D. Prediction method of satellite telemetry data using HP filter[J]. Spacecraft engineering, 2021, 30(4): 23-30. |
[1] | GUO Wang, YANG Yusen, WU Huarui, ZHU Huaji, MIAO Yisheng, GU Jingqiu. Big Models in Agriculture: Key Technologies, Application and Future Directions [J]. Smart Agriculture, 2024, 6(2): 1-13. |
[2] | SHEN Yanyan, ZHAO Yutao, CHEN Gengshen, LYU Zhengang, ZHAO Feng, YANG Wanneng, MENG Ran. Identification and Severity Classification of Typical Maize Foliar Diseases Based on Hyperspectral Data [J]. Smart Agriculture, 2024, 6(2): 28-39. |
[3] | JIA Wenshen, LYU Haolin, ZHANG Shang, QIN Yingdong, ZHOU Wei. Using a Portable Visible-near Infrared Spectrometer and Machine Learning to Distinguish and Quantify Mold Contamination in Wheat [J]. Smart Agriculture, 2024, 6(1): 89-100. |
[4] | LONG Jianing, ZHANG Zhao, LIU Xiaohang, LI Yunxia, RUI Zhaoyu, YU Jiangfan, ZHANG Man, FLORES Paulo, HAN Zhexiong, HU Can, WANG Xufeng. Wheat Lodging Types Detection Based on UAV Image Using Improved EfficientNetV2 [J]. Smart Agriculture, 2023, 5(3): 62-74. |
[5] | YE Dapeng, CHEN Chen, LI Huilin, LEI Yingxiao, WENG Haiyong, QU Fangfang. Visible/NIR Spectral Inversion of Malondialdehyde Content in JUNCAO Based on Deep Convolutional Gengrative Adversarial Network [J]. Smart Agriculture, 2023, 5(3): 132-141. |
[6] | FAN Chengzhi, WANG Ziwen, YANG Xingchao, LUO Yongkai, XU Xuexin, GUO Bin, LI Zhenhai. Machine Learning Inversion Model of Soil Salinity in the Yellow River Delta Based on Field Hyperspectral and UAV Multispectral Data [J]. Smart Agriculture, 2022, 4(4): 61-73. |
[7] | XU Yulin, KANG Mengzhen, WANG Xiujuan, HUA Jing, WANG Haoyu, SHEN Zhen. Corn and Soybean Futures Price Intelligent Forecasting Based on Deep Learning [J]. Smart Agriculture, 2022, 4(4): 156-163. |
[8] | FU Hongyu, WANG Wei, LIAO Ao, YUE Yunkai, XU Mingzhi, WANG Ziwei, CHEN Jianfu, SHE Wei, CUI Guoxian. High Quality Ramie Resource Screening Based on UAV Remote Sensing Phenotype Monitoring [J]. Smart Agriculture, 2022, 4(4): 74-83. |
[9] | FLORES Paulo, ZHANG Zhao. Wheat Lodging Ratio Detection Based on UAS Imagery Coupled with Different Machine Learning and Deep Learning Algorithms [J]. Smart Agriculture, 2021, 3(2): 23-34. |
[10] | FLORES Paulo, ZHANG Zhao, MATHEW Jithin, JAHAN Nusrat, STENGER John. Distinguishing Volunteer Corn from Soybean at Seedling Stage Using Images and Machine Learning [J]. Smart Agriculture, 2020, 2(3): 61-74. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||