Smart Agriculture ›› 2024, Vol. 6 ›› Issue (1): 89-100.doi: 10.12133/j.smartag.SA202311032
• Topic--Intelligent Agricultural Sensor Technology • Previous Articles Next Articles
JIA Wenshen1,2(), LYU Haolin1, ZHANG Shang1(), QIN Yingdong2, ZHOU Wei3
Received:
2023-11-27
Online:
2024-01-30
Foundation items:
About author:
JIA Wenshen, E-mail: jiawenshen@163.com
corresponding author:
JIA Wenshen, LYU Haolin, ZHANG Shang, QIN Yingdong, ZHOU Wei. Using a Portable Visible-near Infrared Spectrometer and Machine Learning to Distinguish and Quantify Mold Contamination in Wheat[J]. Smart Agriculture, 2024, 6(1): 89-100.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202311032
Table 1
Pre-treatment methods used in this study and the effects of their application
预处理方法 | 描述 | 参数设置 | 预期效果 |
---|---|---|---|
标准差标准化 | 将数据转换为均值为0,标准差为1的形式 | 无特定参数 | 消除量纲影响,使不同特征具有可比性 |
标准正态变换 | 转换数据以符合标准正态分布 | 无特定参数 | 改善数据分布,使其更接近正态分布 |
均值中心化 | 从每个数据点中减去整体均值 | 无特定参数 | 消除数据的长期趋势或基线漂移 |
一阶导数 | 计算数据的一阶导数 | 前向差分 | 强调光谱特征的变化,减少基线干扰 |
Savitzky-Golay平滑 | 通过局部多项式拟合来平滑数据 | 平滑窗口大小 | 减少随机噪声,保留信号的基本形状和特征 |
多元散射校正 | 校正由散射引起的光谱变异 | 无特定参数 | 减少或消除光谱变异,提高不同样本间的可比性 |
Table 2
Configuration parameters of each model for distinguishing mouldy wheat
模型 | VNIAPD(2分类) | VNIAPD(3分类) | SINO2040(2分类) | SINO2040(3分类) |
---|---|---|---|---|
KNN | Neighbors = 3e-0 | Neighbors = 3e-0 | Neighbors = 5e-0 | Neighbors = 5e-0 |
SVM | C = 1e-0 Gamma = 1.19e-0 | C = 1e-0 Gamma = 1.05e-0 | C = 1.25e-0 Gamma = 1.15e-0 | C = 1.25e-0 Gamma = 1.08e-0 |
RF | n = 2e+1, features = 5e-0 depth = 1.6e+1 | n = 1.5e-1, features = 3e-0 depth = 2e+1 | n = 2e+1, features = 5e-0 depth = 1.8e+1 | n = 1e+1, features = 5e-0 depth = 2e+1 |
Naïve-Bayes | Gaussian | Gaussian | Gaussian | Gaussian |
BPNN | learning-rate = 1e-4 epoch = 3e+2 | learning-rate = 1e-4 epoch = 4e+2 | learning-rate = 1e-4 epoch = 5e+2 | learning-rate = 1e-3 epoch = 6e+2 |
DNN | learning-rate = 1e-5 epoch = 8e+1 | learning-rate = 1e-5 epoch = 1e+2 | learning-rate = 1e--4 epoch = 1e+2 | learning-rate = 1e-4 epoch = 2e+2 |
Table 3
Accuracy of VNIAPD-based test set for classification of fresh and mouldy wheat
预处理方法 | MSC-1ST | SDN-1ST | 1ST | MC-1ST | SG-1ST |
---|---|---|---|---|---|
KNN | 93.18 | 93.18 | 90.90 | 88.63 | 90.90 |
SVM | 90.90 | 90.90 | 86.36 | 93.18 | 90.90 |
RF | 86.36 | 93.18 | 95.45 | 97.72 | 93.18 |
Naïve-Bayes | 75.00 | 77.27 | 95.45 | 84.09 | 86.36 |
BPNN | 97.72 | 100 | 97.72 | 84.09 | 86.36 |
DNN | 97.72 | 93.18 | 97.70 | 97.70 | 100.00 |
Table 4
Accuracy of VNIAPD-based test set for classification of mild, moderate and severe mould in wheat
预处理方法 | MSC-1ST | SDN-1ST | 1ST | MC-1ST | SG-1ST |
---|---|---|---|---|---|
KNN | 100.00 | 90.90 | 86.36 | 95.45 | 86.36 |
SVM | 90.90 | 95.45 | 93.18 | 97.72 | 93.18 |
RF | 93.18 | 90.90 | 86.36 | 100.00 | 90.90 |
Naïve-Bayes | 90.90 | 86.36 | 97.72 | 88.63 | 93.18 |
BPNN | 97.72 | 100.00 | 95.45 | 93.18 | 93.18 |
DNN | 95.54 | 97.72 | 93.18 | 97.72 | 100.00 |
Table 5
Accuracy of SINO2040-based test set for classification of fresh and mouldy wheat
预处理方法 | MSC-1ST | SDN-1ST | 1ST | MC-1ST | SG-1ST |
---|---|---|---|---|---|
KNN | 97.72 | 97.72 | 93.18 | 93.18 | 93.18 |
SVM | 93.18 | 95.54 | 90.90 | 90.90 | 93.18 |
RF | 95.54 | 93.18 | 90.90 | 95.54 | 95.54 |
Naïve-Bayes | 97.72 | 93.18 | 97.72 | 100.00 | 97.72 |
BPNN | 97.72 | 97.72 | 97.72 | 100.00 | 97.72 |
DNN | 97.72 | 97.72 | 95.54 | 95.54 | 100.00 |
Table 6
Accuracy of SINO2040-based test set for classification of mild, moderate and severe mould in wheat
预处理方法 | MSC-1ST | SDN-1ST | 1ST | MC-1ST | SG-1ST |
---|---|---|---|---|---|
KNN | 97.72 | 97.72 | 95.54 | 95.54 | 97.72 |
SVM | 97.72 | 97.72 | 93.18 | 95.54 | 95.54 |
RF | 93.18 | 90.90 | 90.90 | 93.18 | 93.18 |
Naïve-Bayes | 93.18 | 95.54 | 88.63 | 95.54 | 90.90 |
BPNN | 97.72 | 97.72 | 100.00 | 100.00 | 97.72 |
DNN | 97.72 | 97.72 | 95.54 | 97.72 | 100.00 |
1 |
王小萌, 吴文福, 尹君, 等. 基于温湿度场云图的小麦粮堆霉变与温湿度耦合分析[J]. 农业工程学报, 2018, 34(10): 260-266.
|
|
|
2 |
悦燕飞, 王若兰, 渠琛玲. 小麦储藏过程中发热霉变研究进展[J]. 粮食与油脂, 2018, 31(7): 18-20.
|
|
|
3 |
|
4 |
张红涛, 张亮, 谭联, 等. 基于近红外高光谱成像的单籽粒小麦品种分类研究[J]. 粮食与油脂, 2022, 35(12): 59-62.
|
|
|
5 |
|
6 |
孙晓荣, 郑冬钰, 刘翠玲, 等. 小麦粉品质在线无损快速检测系统设计与实现[J]. 食品与机械, 2022, 38(12): 87-91.
|
|
|
7 |
田静, 陈斌, 陆道礼, 等. 不同分光原理近红外光谱仪光谱标准化方法在小麦粉品质检测中的应用[J]. 中国食品学报, 2022, 22(10): 286-294.
|
|
|
8 |
鲁玉杰, 王文敬, 张俊东, 等. 基于近红外光谱技术及ELM对小麦中不同生长阶段米象的分类识别[J]. 河南工业大学学报(自然科学版), 2023, 44(1): 104-111.
|
|
|
9 |
王晓琼, 陈丽, 向娜娜, 等. 基于近红外光谱分析技术测定小麦淀粉的含量[J]. 粮食与饲料工业, 2021(6): 58-60.
|
|
|
10 |
陈岩, 何鸿举, 欧阳娟, 等. 近红外结合线性回归算法快速预测小麦籽粒干物质和重量[J]. 食品工业科技, 2022, 43(4): 323-331.
|
|
|
11 |
姜明伟, 王彩红, 张庆辉. 基于CARS变量选择方法的小麦硬度测定研究[J]. 河南工业大学学报(自然科学版), 2020, 41(6): 91-95, 105.
|
|
|
12 |
邹小波, 封韬, 郑开逸, 等. 利用近红外及中红外融合技术对小麦产地和烘干程度的同时鉴别[J]. 光谱学与光谱分析, 2019, 39(5): 1445-1450.
|
|
|
13 |
沈飞, 刘潇, 裴斐, 等. ATR-FTIR在小麦及其制品呕吐毒素污染水平快速测定中的应用[J]. 食品科学, 2019, 40(2): 293-297.
|
|
|
14 |
宋金鹏, 梁琨, 张驰, 等. 基于深度学习与可见-近红外光谱的患腥黑穗病小麦籽粒分类研究[J]. 分析测试学报, 2023, 42(7): 784-793.
|
|
|
15 |
袁莹, 王伟, 褚璇, 等. 基于傅里叶变换近红外和支持向量机的霉变玉米检测[J]. 中国粮油学报, 2015, 30(5): 143-146.
|
|
|
16 |
|
17 |
|
18 |
|
19 |
刘建学, 尹晓慧, 韩四海, 等. 便捷式近红外光谱仪研究进展[J]. 河南农业大学学报, 2019, 53(4): 662-670.
|
|
|
20 |
霍学松, 陈瀑, 戴嘉伟, 等. 微小型近红外光谱仪的应用进展与展望[J]. 分析测试学报, 2022, 41(9): 1301-1313.
|
|
[1] | LIU Liqi, WEI Guangyuan, ZHOU Ping. Prediction and Mapping of Soil Total Nitrogen Using GF-5 Image Based on Machine Learning Optimization Modeling [J]. Smart Agriculture, 2024, 6(5): 61-73. |
[2] | YAO Jianen, LIU Haiqiu, YANG Man, FENG Jinying, CHEN Xiu, ZHANG Peipei. Reconstruction of U.S. Regional-Scale Soybean SIF Based on MODIS Data and BP Neural Network [J]. Smart Agriculture, 2024, 6(5): 40-50. |
[3] | GUO Wang, YANG Yusen, WU Huarui, ZHU Huaji, MIAO Yisheng, GU Jingqiu. Big Models in Agriculture: Key Technologies, Application and Future Directions [J]. Smart Agriculture, 2024, 6(2): 1-13. |
[4] | SHEN Yanyan, ZHAO Yutao, CHEN Gengshen, LYU Zhengang, ZHAO Feng, YANG Wanneng, MENG Ran. Identification and Severity Classification of Typical Maize Foliar Diseases Based on Hyperspectral Data [J]. Smart Agriculture, 2024, 6(2): 28-39. |
[5] | LONG Jianing, ZHANG Zhao, LIU Xiaohang, LI Yunxia, RUI Zhaoyu, YU Jiangfan, ZHANG Man, FLORES Paulo, HAN Zhexiong, HU Can, WANG Xufeng. Wheat Lodging Types Detection Based on UAV Image Using Improved EfficientNetV2 [J]. Smart Agriculture, 2023, 5(3): 62-74. |
[6] | YE Dapeng, CHEN Chen, LI Huilin, LEI Yingxiao, WENG Haiyong, QU Fangfang. Visible/NIR Spectral Inversion of Malondialdehyde Content in JUNCAO Based on Deep Convolutional Gengrative Adversarial Network [J]. Smart Agriculture, 2023, 5(3): 132-141. |
[7] | SHI Jiefeng, HUANG Wei, FAN Xieyang, LI Xiuhua, LU Yangxu, JIANG Zhuhui, WANG Zeping, LUO Wei, ZHANG Muqing. Yield Prediction Models in Guangxi Sugarcane Planting Regions Based on Machine Learning Methods [J]. Smart Agriculture, 2023, 5(2): 82-92. |
[8] | FAN Chengzhi, WANG Ziwen, YANG Xingchao, LUO Yongkai, XU Xuexin, GUO Bin, LI Zhenhai. Machine Learning Inversion Model of Soil Salinity in the Yellow River Delta Based on Field Hyperspectral and UAV Multispectral Data [J]. Smart Agriculture, 2022, 4(4): 61-73. |
[9] | FU Hongyu, WANG Wei, LIAO Ao, YUE Yunkai, XU Mingzhi, WANG Ziwei, CHEN Jianfu, SHE Wei, CUI Guoxian. High Quality Ramie Resource Screening Based on UAV Remote Sensing Phenotype Monitoring [J]. Smart Agriculture, 2022, 4(4): 74-83. |
[10] | ZHOU Qiaoli, MA Li, CAO Liying, YU Helong. Identification of Tomato Leaf Diseases Based on Improved Lightweight Convolutional Neural Networks MobileNetV3 [J]. Smart Agriculture, 2022, 4(1): 47-56. |
[11] | GUO Zhiming, WANG Junyi, SONG Ye, ZOU Xiaobo, CAI Jianrong. Research Progress of Sensing Detection and Monitoring Technology for Fruit and Vegetable Quality Control [J]. Smart Agriculture, 2021, 3(4): 14-28. |
[12] | FLORES Paulo, ZHANG Zhao. Wheat Lodging Ratio Detection Based on UAS Imagery Coupled with Different Machine Learning and Deep Learning Algorithms [J]. Smart Agriculture, 2021, 3(2): 23-34. |
[13] | FLORES Paulo, ZHANG Zhao, MATHEW Jithin, JAHAN Nusrat, STENGER John. Distinguishing Volunteer Corn from Soybean at Seedling Stage Using Images and Machine Learning [J]. Smart Agriculture, 2020, 2(3): 61-74. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||