Smart Agriculture ›› 2024, Vol. 6 ›› Issue (1): 135-146.doi: 10.12133/j.smartag.SA202309011
• Information Processing and Decision Making • Previous Articles Next Articles
MAO Yongwen(), HAN Junying(), LIU Chengzhong
Received:
2023-09-11
Online:
2024-01-30
Foundation items:
About author:
MAO Yongwen, E-mail: halomyw@163.com
corresponding author:
MAO Yongwen, HAN Junying, LIU Chengzhong. Automated Flax Seeds Testing Methods Based on Machine Vision[J]. Smart Agriculture, 2024, 6(1): 135-146.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202309011
Table 1
Comparison of image segmentation methods for flax seeds
品种 | 编号 | 个数 | 各方法统计种子数 | 各方法计算准确率/% | 各方法运算时间/ms | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
极限腐蚀 (正负偏差) | 分水岭 (正负偏差) | 本文算法 (正负偏差) | 极限腐蚀 | 分水岭 | 本文算法 | 极限腐蚀 | 分水岭 | 本文算法 | |||
同白亚3号 | 1 | 100 | 93(-7) | 98(-2) | 107(+7) | 93.00 | 97.96 | 93.00 | 52 | 2 353 | 64 |
2 | 150 | 137(-13) | 146(-4) | 160(+10) | 91.33 | 97.26 | 93.33 | 56 | 3 778 | 66 | |
3 | 200 | 180(-20) | 193(-7) | 201(+1) | 90.00 | 96.37 | 99.00 | 62 | 4 578 | 72 | |
平均值 | 150 | 136.67 | 145.67 | 156.00 | 91.44 | 97.20 | 95.11 | 56.67 | 3 569.67 | 67.33 | |
坝亚21号 | 1 | 100 | 36(-64) | 95(-5) | 96(-4) | 36.00 | 95.00 | 96.00 | 46 | 2 390 | 62 |
2 | 150 | 65(-85) | 141(-9) | 150- | 43.33 | 94.00 | 100.00 | 47 | 3 437 | 69 | |
3 | 200 | 93(-107) | 179(-21) | 200- | 46.50 | 89.50 | 100.00 | 49 | 4 350 | 71 | |
平均值 | 150 | 64.67 | 138.33 | 148.67 | 41.94 | 92.83 | 98.67 | 47.33 | 3 392.33 | 67.33 | |
NM-21-10 | 1 | 100 | 85(-15) | 97(-3) | 99(-1) | 85.00 | 97.00 | 99.00 | 53 | 2 221 | 68 |
2 | 150 | 125(-25) | 141(-9) | 149(-1) | 83.33 | 94.00 | 99.33 | 55 | 3 280 | 75 | |
3 | 200 | 169(-31) | 188(-12) | 200- | 84.50 | 94.00 | 100.00 | 64 | 4 157 | 79 | |
平均值 | 150 | 126.33 | 142.00 | 149.33 | 84.28 | 95.00 | 99.44 | 57.33 | 3 219.33 | 74.00 | |
08006-375 | 1 | 100 | 92(-8) | 96(-4) | 105(+5) | 92.00 | 95.83 | 95.00 | 52 | 2 411 | 64 |
2 | 150 | 139(-11) | 145(-5) | 158(+8) | 92.67 | 96.55 | 94.67 | 56 | 3 453 | 71 | |
3 | 200 | 189(-11) | 194(-6) | 204(+4) | 94.50 | 96.91 | 98.00 | 61 | 4 764 | 74 | |
平均值 | 150 | 140.00 | 145.00 | 155.67 | 93.06 | 96.43 | 95.89 | 56.33 | 3 542.67 | 69.67 | |
平均值 | 150 | 116.92 | 142.75 | 152.42 | 77.68 | 95.37 | 97.28 | 54.42 | 3 431.00 | 69.58 |
Table 2
Morphological data of flax seeds
品种 | 编号 | 个数 | 短轴/mm | 长轴/mm | 周长/mm | 面积/mm² |
---|---|---|---|---|---|---|
同白亚3号 | 1 | 100 | 3.13 | 6.20 | 14.23 | 15.59 |
2 | 150 | 3.06 | 6.13 | 14.01 | 15.52 | |
3 | 200 | 2.92 | 5.85 | 13.37 | 14.37 | |
平均值 | 150 | 3.04 | 6.06 | 13.87 | 15.16 | |
坝亚21号 | 1 | 100 | 3.43 | 6.60 | 15.24 | 18.14 |
2 | 150 | 3.25 | 6.31 | 14.52 | 17.20 | |
3 | 200 | 3.42 | 6.59 | 15.21 | 17.98 | |
平均值 | 150 | 3.37 | 6.50 | 14.99 | 17.77 | |
NM-21-10 | 1 | 100 | 3.22 | 5.91 | 13.83 | 15.94 |
2 | 150 | 3.18 | 5.79 | 13.60 | 15.34 | |
3 | 200 | 3.29 | 6.04 | 14.15 | 16.22 | |
平均值 | 150 | 3.23 | 5.91 | 13.86 | 15.83 | |
08006-375 | 1 | 100 | 3.05 | 6.03 | 13.83 | 15.01 |
2 | 150 | 3.17 | 6.24 | 14.33 | 15.64 | |
3 | 200 | 3.21 | 6.34 | 14.56 | 15.90 | |
平均值 | 150 | 3.14 | 6.20 | 14.24 | 15.52 | |
平均值 | 150 | 3.19 | 6.17 | 14.24 | 16.07 |
Table 3
Comparison of measured data for flax seeds
品种 | 编号 | 考种短轴/mm | 考种长轴/mm | *测量短轴/mm | *测量长轴/mm | 平均误差/% |
---|---|---|---|---|---|---|
同白亚3号 | 1 | 3.13 | 6.20 | 2.91 | 5.78 | 7.41 |
2 | 3.06 | 6.13 | 2.98 | 5.83 | 3.92 | |
3 | 2.92 | 5.85 | 2.72 | 5.68 | 5.71 | |
平均值 | 3.04 | 6.06 | 2.87 | 5.76 | 5.50 | |
坝亚21号 | 1 | 3.43 | 6.60 | 3.28 | 6.19 | 5.60 |
2 | 3.25 | 6.31 | 3.03 | 6.10 | 5.35 | |
3 | 3.42 | 6.59 | 3.17 | 6.15 | 7.52 | |
平均值 | 3.37 | 6.50 | 3.16 | 6.15 | 6.16 | |
NM-21-10 | 1 | 3.22 | 5.91 | 3.48 | 6.12 | 5.45 |
2 | 3.18 | 5.79 | 3.23 | 6.05 | 2.92 | |
3 | 3.29 | 6.04 | 3.52 | 6.19 | 4.48 | |
平均值 | 3.23 | 5.91 | 3.41 | 6.12 | 4.28 | |
08006-375 | 1 | 3.05 | 6.03 | 3.27 | 6.24 | 5.05 |
2 | 3.17 | 6.24 | 2.98 | 6.12 | 4.17 | |
3 | 3.21 | 6.34 | 3.13 | 6.01 | 4.02 | |
平均值 | 3.14 | 6.20 | 3.13 | 6.12 | 4.41 | |
平均值 | 3.19 | 6.17 | 3.14 | 6.04 | 5.09 |
1 |
|
2 |
马立晓, 王树彦, 王卓, 等. 国内外胡麻品种农艺性状及其品质评价[J]. 北方农业学报, 2017, 45(3): 19-22.
|
|
|
3 |
郭芳, 牛俊义, 高珍妮. 品种密度互作对胡麻抗倒伏特性的影响[J]. 甘肃农业大学学报, 2016, 51(3): 72-76.
|
|
|
4 |
王炜, 陈军, 叶春雷, 等. 甘肃胡麻地方及育成品种农艺性状分析及评价[J]. 中国种业, 2022(12): 75-81.
|
|
|
5 |
IVA S,
|
6 |
|
7 |
吴迪. 基于计算机视觉的玉米考种参数获取研究[D]. 杭州: 杭州电子科技大学, 2020.
|
|
|
8 |
周洪垒. 基于图像处理的水稻考种系统的设计与实现[D]. 成都: 电子科技大学, 2019.
|
|
|
9 |
周成全, 叶宏宝, 俞国红, 等. 基于机器视觉与深度学习的西兰花表型快速提取方法研究[J]. 智慧农业(中英文), 2020, 2(1): 121-132.
|
|
|
10 |
李锦明. 基于机器视觉的玉米考种技术研究[D]. 杭州: 杭州电子科技大学, 2019.
|
|
|
11 |
|
12 |
|
13 |
马正华, 申根荣, 吕继东. 基于极限腐蚀的重叠苹果果实分割方法[J]. 江苏农业学报, 2017, 33(6): 1372-1378.
|
|
|
14 |
吴叔珍, 姚青. 基于凹点寻找标记的分水岭算法分割粘连谷粒[J]. 浙江农业科学, 2017, 58(8): 1401-1405.
|
|
|
15 |
柳冠伊, 刘平义, 魏文军, 等. 玉米果穗粘连籽粒图像分割方法[J]. 农业机械学报, 2014, 45(9): 285-290.
|
|
|
16 |
|
17 |
祝保林. 基于机器视觉的小桐子种子识别分类研究[D]. 开封: 河南大学, 2020.
|
|
|
18 |
李兴华, 方子森, 牛俊义. 胡麻种子形态结构与萌发特性的研究[J]. 种子, 2012, 31(11): 26-30.
|
|
|
19 |
李毅念, 杜世伟, 姚敏, 等. 基于小麦群体图像的田间麦穗计数及产量预测方法[J]. 农业工程学报, 2018, 34(21): 185-194.
|
|
|
20 |
段鹏, 程文播, 钱庆, 等. 基于瓶颈检测和分水岭算法的重叠宫颈细胞图像分割方法[J]. 中国医疗器械杂志, 2020, 44(1): 7-12.
|
|
|
21 |
姚业浩, 李毅念, 邹玮, 等. 油菜籽粒千粒重图像测定方法[J]. 中国油料作物学报, 2022, 44(1): 201-210.
|
|
|
22 |
万路瑶. 基于图像识别的作物种子自动计数方法研究[D]. 成都: 成都大学, 2020.
|
|
|
23 |
熊利荣, 郑宇. 基于形态学的稻谷种子品种识别[J]. 粮油加工, 2010(6): 45-48.
|
|
|
24 |
王刚. 基于机器视觉的玉米千粒重快速检测仪的研制[D]. 长春: 吉林大学, 2012.
|
|
|
25 |
人民币防伪特征[EB/OL]. [2023-09-09].
|
26 |
|
27 |
彭顺正, 岳延滨, 冯恩英, 等. 基于机器视觉的油菜籽计数系统开发与设计[J]. 计算机应用, 2020, 40(S2): 142-146.
|
|
[1] | LI Zhengkai, YU Jiahui, PAN Shijia, JIA Zefeng, NIU Zijie. Individual Tree Skeleton Extraction and Crown Prediction Method of Winter Kiwifruit Trees [J]. Smart Agriculture, 2023, 5(4): 92-104. |
[2] | TANG Hui, WANG Ming, YU Qiushi, ZHANG Jiaxi, LIU Liantao, WANG Nan. Root Image Segmentation Method Based on Improved UNet and Transfer Learning [J]. Smart Agriculture, 2023, 5(3): 96-109. |
[3] | HE Ruimin, ZHENG Kefeng, WEI Qinyang, ZHANG Xiaobin, ZHANG Jun, ZHU Yihang, ZHAO Yiying, GU Qing. Identification and Counting of Silkworms in Factory Farm Using Improved Mask R-CNN Model [J]. Smart Agriculture, 2022, 4(2): 163-173. |
[4] | GUO Xiuming, ZHU Yeping, LI Shijuan, ZHANG Jie, LYU Chunyang, LIU Shengping. Scale Adaptive Small Objects Detection Method in Complex Agricultural Environment: Taking Bees as Research Object [J]. Smart Agriculture, 2022, 4(1): 140-149. |
[5] | GUO Zhiming, WANG Junyi, SONG Ye, ZOU Xiaobo, CAI Jianrong. Research Progress of Sensing Detection and Monitoring Technology for Fruit and Vegetable Quality Control [J]. Smart Agriculture, 2021, 3(4): 14-28. |
[6] | GUO Wei, WU Huarui, ZHU Huaji. Design and Application of Facility Greenhouse Image Collecting and Environmental Data Monitoring Robot System [J]. Smart Agriculture, 2020, 2(3): 48-60. |
[7] | HAN Shuqing, ZHANG Jing, CHENG Guodong, PENG Yingqi, ZHANG Jianhua, WU Jianzhai. Current State and Challenges of Automatic Lameness Detection in Dairy Cattle [J]. Smart Agriculture, 2020, 2(3): 21-36. |
[8] | Xia Xue, Sun Qixin, Shi Xiao, Chai Xiujuan. Apple detection model based on lightweight anchor-free deep convolutional neural network [J]. Smart Agriculture, 2020, 2(1): 99-110. |
[9] | Zhou Chao, Xu Daming, Lin Kai, Chen Lan, Zhang Song, Sun Chuanheng, Yang Xinting. Evaluation of fish feeding intensity in aquaculture based on near-infrared machine vision [J]. Smart Agriculture, 2019, 1(1): 76-84. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||