1 |
TANAKA Y, SUDO M. Studies on the technology of artifical diet rearing for parental strains of the silkworm, 4: The relationship between the water content of artificial diets for the fifth larval instar and egg laying results[J]. Journal of Dainippon Silk Foundation, 2006, 53: 1-5.
|
2 |
吴亚群, 张升祥, 王洪江, 等. 家蚕不同品种对人工饲料摄食性的遗传模式[J]. 蚕业科学, 2017, 43(4): 603-609.
|
|
WU Y, ZHANG S, WANG H, et al. Inheritance pattern of feeding habit on artificial diet in different bombyx mori varieties[J]. Science of Sericulture, 2017, 43(4): 603-609.
|
3 |
钱秋杰, 陈伟国. 家蚕人工饲料研究与应用进展[J]. 蚕桑通报, 2016, 47(2): 11-14.
|
|
QIAN Q, CHEN W. Research and application progress of artificial diet for silkworm[J]. Bulletin of Sericulture, 2016, 47(2): 11-14.
|
4 |
董久鸣, 潘美良, 吴海平. 加快推进蚕桑产业转型发展的思考——巴贝工厂化养蚕的探索与启示[J]. 蚕桑通报, 2018, 49(2): 14-16.
|
|
DONG J, PAN M, WU H. Thinking on speeding up the transformation and development of sericulture Industry—The exploration and enlightenment based on the BABEI's silkworm rearing in the factory[J]. Bulletin of Sericulture, 2018, 49(2): 14-16.
|
5 |
王亮, 胡帅栋. 推进全龄人工饲料工厂化养蚕的巴贝模式[J]. 蚕桑通报, 2020, 51(1): 37-45.
|
|
WANG L, HU S. Babe model of promoting industrial sericulture by feeding artificial diet of full larval stage[J]. Bulletin of Sericulture, 2020, 51(1): 37-45.
|
6 |
DOU J, LI J. Robust object detection based on deformable part model and improved scale invariant feature transform[J]. Optik-International Journal for Light and Electron Optics, 2013, 124(24): 6485-6492.
|
7 |
HONG G S, KIM B G, HWANG Y S, et al. Fast multi-feature pedestrian detection algorithm based on histogram of oriented gradient using discrete wavelet transform[J]. Multimedia Tools and Applications, 2015, 75(23): 1-17.
|
8 |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 25: 1097-1105.
|
9 |
GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]// IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, New York, USA: IEEE, 2014.
|
10 |
HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 37(9): 1904-1916.
|
11 |
GIRSHICK R. Fast R-CNN[C]// 2015 IEEE International Conference on Computer Vision. Piscataway, New York, USA: IEEE, 2015.
|
12 |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(6): 1137-1149.
|
13 |
HE K, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]// IEEE International Conference on Computer Vision. Piscataway, New York, USA: IEEE, 2017.
|
14 |
ZHOU C, HU J, XU Z, et al. A Novel greenhouse-based system for the detection and plumpness assessment of strawberry using an improved deep learning technique[J]. Frontiers in Plant Science, 2020, 11: ID 559.
|
15 |
TIAN Y, YANG G, WANG Z, et al. Apple detection during different growth stages in orchards using the improved YOLO-V3 model[J]. Computers and Electronics in Agriculture, 2019, 157: 417-426.
|
16 |
张远琴, 肖德琴, 陈焕坤, 等. 基于改进Faster R-CNN的水稻稻穗检测方法[J]. 农业机械学报, 52(8): 231-240.
|
|
ZHANG Y, XIAO D, CHEN H, et al. Rice panicle detection method based on improved Faster R-CNN[J]. Transactions of the CSAM, 52(8): 231-240.
|
17 |
WEN Q, LUO Z, CHEN R, et al. Deep learning approaches on defect detection in high resolution aerial images of insulators[J]. Sensors, 2021, 21(4): ID 1033.
|
18 |
WJPD A, YT A, RONG L.B, et al. Detection and segmentation of overlapped fruits based on optimized mask R-CNN application in apple harvesting robot[J]. Computers and Electronics in Agriculture, 2020, 172(6): ID 105380.
|
19 |
M.AKHAN, ZHANG Y D, SHARIF M, et al. Pixels to classes: Intelligent learning framework for multiclass skin lesion localization and classification[J]. Computers and Electrical Engineering, 2021, 90: 1-20.
|
20 |
XU Y, ZHU L, YANG Y, et al. Training robust object detectors from noisy category labels and imprecise bounding boxes[J]. IEEE Transactions on Image Processing, 2021, 30: 5782-5792.
|
21 |
ZHANG Y, CHU J, LENG L, et al. Mask-refined R-CNN: A network for refining object details in instance segmentation[J]. Sensors, 2020, 20(4): ID 1010.
|
22 |
TIAN Y, YANG G, WANG Z, et al. Instance segmentation of apple flowers using the improved mask R-CNN model[J]. Biosystems Engineering, 2020, 193: 264-278.
|