Smart Agriculture ›› 2024, Vol. 6 ›› Issue (6): 155-167.doi: 10.12133/j.smartag.SA202408014
• Topic--Intelligent Agricultural Knowledge Services and Smart Unmanned Farms(Part 1) • Previous Articles Next Articles
ZHOU Xiushan1(
), WEN Luting2, JIE Baifei3, ZHENG Haifeng1, WU Qiqi1, LI Kene1, LIANG Junneng2, LI Yijian2, WEN Jiayan1(
), JIANG Linyuan2(
)
Received:2024-08-23
Online:2024-11-30
Foundation items:Guangxi Key Research and Development Program Project(桂科AB21220019); Chief Expert of Guangxi Shrimp and Mollusk Industry Innovation Team under the National Modern Agricultural Industry Technology System(nycytxgxcxtd-2023-14-01); Aquaculture Industry Science and Technology Pioneer Team Guangxi Agricultural Science Alliance(202410)
About author:corresponding author:
CLC Number:
ZHOU Xiushan, WEN Luting, JIE Baifei, ZHENG Haifeng, WU Qiqi, LI Kene, LIANG Junneng, LI Yijian, WEN Jiayan, JIANG Linyuan. Real-time Detection Algorithm of Expanded Feed Image on the Water Surface Based on Improved YOLOv11[J]. Smart Agriculture, 2024, 6(6): 155-167.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202408014
Table 2
Comparison of ablation experiment results for improved YOLOv11 model of surface extruded feed detection
| 序号 | AFGC | P2层 | Slim-neck | P/% | R/% | mAP50/% | F 1分数/% | GFLOPs/G | FPS/(帧/s) |
|---|---|---|---|---|---|---|---|---|---|
| 1 | × | × | × | 72.00 | 69.70 | 70.60 | 71.00 | 6.4 | 53.20 |
| 2 | √ | × | × | 72.10 | 70.40 | 71.60 | 71.00 | 6.3 | 51.10 |
| 3 | × | √ | × | 78.00 | 78.70 | 79.40 | 78.00 | 10.3 | 43.80 |
| 4 | × | × | √ | 77.40 | 78.90 | 78.90 | 78.00 | 5.9 | 45.10 |
| 5 | √ | √ | × | 78.60 | 78.00 | 79.80 | 78.00 | 10.3 | 42.50 |
| 6 | √ | × | √ | 72.00 | 70.20 | 70.80 | 71.00 | 6.0 | 44.30 |
| 7 | × | √ | √ | 77.70 | 78.50 | 79.50 | 78.00 | 10.0 | 36.90 |
| 8 | √ | √ | √ | 78.70 | 78.70 | 80.00 | 79.00 | 10.0 | 38.30 |
Table 3
Comparison of detection results among different models on a self-made dataset of surface extruded feed detection
| 模型 | P/% | R/% | mAP50/% | F 1分数/% | GFLOPs/G | FPS/(帧/s) |
|---|---|---|---|---|---|---|
| YOLOv3-tiny | 41.40 | 37.20 | 41.30 | 43.30 | 19.0 | 153.82 |
| YOLOv5 | 71.90 | 69.40 | 70.80 | 71.00 | 7.2 | 111.85 |
| YOLOv6 [ | 71.50 | 66.70 | 67.80 | 70.50 | 11.9 | 146.01 |
| YOLOv8 | 71.30 | 80.00 | 71.30 | 72.00 | 8.2 | 92.50 |
| YOLOv11 | 82.30 | 81.00 | 70.60 | 71.00 | 6.4 | 53.20 |
| YOLOv11-AP2S | 78.70 | 78.70 | 80.00 | 79.00 | 10.0 | 38.30 |
Table 4
Comparison between the present study's method and existing machine vision-based feed detection methods
| 文献 | 图像处理 | 检测方法 | 功能 | 结果 |
|---|---|---|---|---|
| Hu等 [ | 图像和数据增强 | 基于改进的YOLOv4网络的检测模型 | 水下图像中漏斗饲料颗粒的实时检测 | mAP50:92.61% |
| Li等 [ | 直方图拟合 | 分割馈源的自适应阈值方法 | 在水下发现未食用的鱼类食物 | TPR:80.00%~95.90% FPR:<2.7% |
| Gao和Xu [ | 图像去除、图像建立和图像增强 | 基于个体颗粒面积的轮廓识别和饲料颗粒数量估计的阈值方法 | 标识和计数剩余提要 | 相对误差:大约10% |
| Hou等 [ | 图像调整尺寸 | 改进的多列卷积神经网络的检测方法 | 检测进料颗粒 | MAE:2.32 MSE:3.00 |
| Wang等 [ | — | 用于检测未食用饲料颗粒的多任务卷积神经网络 | 分析养殖鱼类的摄食活性,监测未食用饲料颗粒的数量,并进行动态调整饲养 | MAE:4.80 MSE:6.75 |
| YOLOv11-AP2S | — | 基于改进的YOLOv11网络的检测模型 | 水面膨化饲料颗粒的实时检测 | mAP50:80.00% |
| 1 |
张镇府. 基于机器视觉的圈养鲈鱼智能决策投饵系统的研究[D]. 武汉: 华中农业大学, 2022.
|
|
|
|
| 2 |
|
| 3 |
|
| 4 |
|
| 5 |
杨锋, 姚晓通. 基于改进YOLOv8的小麦叶片病虫害检测轻量化模型[J]. 智慧农业(中英文), 2024, 6( 1): 147- 157.
|
|
|
|
| 6 |
|
| 7 |
冯双星. 基于深度学习的鱼类摄食强度探测与智能投喂系统研究[D]. 南宁: 广西大学, 2022.
|
|
|
|
| 8 |
张佳林, 徐立鸿, 刘世晶. 基于水下机器视觉的大西洋鲑摄食行为分类[J]. 农业工程学报, 2020, 36( 13): 158- 164.
|
|
|
|
| 9 |
郭强, 杨信廷, 周超, 等. 基于形状与纹理特征的鱼类摄食状态检测方法[J]. 上海海洋大学学报, 2018, 27( 2): 181- 189.
|
|
|
|
| 10 |
|
| 11 |
|
| 12 |
王鹤榕, 陈英义, 柴莹倩, 等. 融合VoVNetv2和置换注意力机制的鱼群摄食图像分割方法[J]. 智慧农业(中英文), 2023, 5( 4): 137- 149.
|
|
|
|
| 13 |
徐立鸿, 黄薪, 刘世晶. 基于改进LRCN的鱼群摄食强度分类模型[J]. 农业机械学报, 2022, 53( 10): 236- 241.
|
|
|
|
| 14 |
冯双星, 王丁弘, 潘良, 等. 基于轻量型 S3D 算法的鱼类摄食强度识别系统设计与试验[J]. 渔业现代化, 2023, 50( 3): 79- 86.
|
|
|
|
| 15 |
黄平. 基于深度学习的鱼类摄食行为识别及精准养殖研究[D]. 南宁: 广西大学, 2022.
|
|
|
|
| 16 |
朱明, 张镇府, 黄凰, 等. 基于轻量级神经网络MobileNetV3-Small的鲈鱼摄食状态分类[J]. 农业工程学报, 2021, 37( 19): 165- 172.
|
|
|
|
| 17 |
郭俊. 基于图像与声音信息的养殖鱼群摄食规律与投饵技术研究[D]. 宁波: 宁波大学, 2018.
|
|
|
|
| 18 |
|
| 19 |
刘杨. 基于深度学习的水下残饵检测方法研究与实现[D]. 扬州: 扬州大学, 2021.
|
|
|
|
| 20 |
|
| 21 |
|
| 22 |
|
| 23 |
|
| 24 |
周华平, 宋明龙, 孙克雷. 一种轻量化的水下目标检测算法SG-Det[J]. 光电子·激光, 2023, 34( 2): 156- 165.
|
|
|
|
| 25 |
徐彦威, 李军, 董元方, 等. YOLO系列目标检测算法综述[J]. 计算机科学与探索, 2024, 18( 9): 2221- 2238.
|
|
|
|
| 26 |
|
| 27 |
|
| 28 |
|
| 29 |
|
| 30 |
|
| 31 |
|
| [1] | HAN Yu, QI Kangkang, ZHENG Jiye, LI Jinai, JIANG Fugui, ZHANG Xianglun, YOU Wei, ZHANG Xia. Lightweight Cattle Facial Recognition Method Based on Improved YOLOv11 [J]. Smart Agriculture, 2025, 7(3): 173-184. |
| [2] | PENG Qiujun, LI Weiran, LIU Yeqiang, LI Zhenbo. High-Precision Fish Pose Estimation Method Based on Improved HRNet [J]. Smart Agriculture, 2025, 7(3): 160-172. |
| [3] | NIU Ziang, QIU Zhengjun. Extraction Method of Maize Plant Skeleton and Phenotypic Parameters Based on Improved YOLOv11-Pose [J]. Smart Agriculture, 2025, 7(2): 95-105. |
| [4] | LI Daoliang, LIU Chang. Recent Advances and Future Outlook for Artificial Intelligence in Aquaculture [J]. Smart Agriculture, 2020, 2(3): 1-20. |
| [5] | GU Hao, WANG Zhiqiang, WU Hao, JIANG Yongnian, GUO Ya. A Fluorescence Based Dissolved Oxygen Sensor [J]. Smart Agriculture, 2020, 2(2): 48-58. |
| [6] | Zhou Chao, Xu Daming, Lin Kai, Chen Lan, Zhang Song, Sun Chuanheng, Yang Xinting. Evaluation of fish feeding intensity in aquaculture based on near-infrared machine vision [J]. Smart Agriculture, 2019, 1(1): 76-84. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||