PENG Qiujun1,2,3,4,5, LI Weiran1,2,3,4,5, LIU Yeqiang1,2,3,4,5, LI Zhenbo1,2,3,4,5()
Received:
2025-01-25
Online:
2025-05-22
Foundation items:
National Key Research and Development Program of China(2020YFD0900204); National Science and Technology Major Project(2021ZD0113805); Beijing Smart Agriculture Innovation Consortium Project(BAIC10-2024)
About author:
PENG Qiujun, research direction is computer vision. E-mail: pengqiujun@cau.edu.cn
corresponding author:
CLC Number:
PENG Qiujun, LI Weiran, LIU Yeqiang, LI Zhenbo. High-Precision Fish Pose Estimation Method Based on Inproved HRNet[J]. Smart Agriculture, doi: 10.12133/j.smartag.SA202502001.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202502001
Table 2
The amount and distribution of the proposed dataset
Dataset | Training set images | Test set images | Image total | Fish total |
---|---|---|---|---|
Oplegnathus punctatus images before augmentation | 400 | 100 | 500 | 800 |
Oplegnathus punctatus images after augmentation | 800 | 100 | 900 | 1 800 |
Ornamental fish images | 240 | 60 | 300 | 3 000 |
Final dataset total | 1 040 | 160 | 1 200 | 4 800 |
Table 3
Configuration of multi-scale feature maps produced by each stage of HPFPE study
Layer | Multi-scale feature map | Number of branches | Number of blocks in each branch | Number of exchange units |
---|---|---|---|---|
Stage 1 | 1/4 | 1 | 4 | 0 |
Stage 2 | 1/4, 1/8 | 2 | 4, 4 | 1 |
Stage 3 | 1/4, 1/8, 1/16 | 3 | 4, 4, 4 | 4 |
Stage 4 | 1/4, 1/8, 1/16, 1/32 | 4 | 4, 4, 4, 4 | 3 |
Table 6
Comparison of HPFPE with HRNet on oplegnathus punctatus data
Method | Backbone | Input size | AP/% | AP50/% | AP75/% | AR/% | AR50/% | AR75/% |
---|---|---|---|---|---|---|---|---|
HRNet | HRNet-W32 | 256×192 | 71.50 | 96.72 | 76.69 | 75.45 | 97.00 | 79.00 |
HRNet-W32 | 384×288 | 72.70 | 96.95 | 78.77 | 76.35 | 97.50 | 81.00 | |
HRNet-W48 | 256×192 | 71.15 | 94.53 | 77.39 | 75.25 | 95.50 | 80.50 | |
HRNet-W48 | 384×288 | 72.84 | 96.66 | 80.74 | 76.60 | 97.00 | 82.50 | |
HPFPE (Ours) | HRNet-W32 | 256×192 | 72.12 | 97.98 | 74.87 | 76.30 | 98.50 | 78.50 |
HRNet-W32 | 384×288 | 74.05 | 99.01 | 75.82 | 77.85 | 99.50 | 80.00 | |
HRNet-W48 | 256×192 | 72.91 | 96.90 | 78.13 | 76.65 | 97.00 | 80.50 | |
HRNet-W48 | 384×288 | 74.12 | 97.89 | 81.99 | 77.60 | 98.00 | 84.00 |
Table 7
Comparison with other methods on oplegnathus punctatus data when input size is 256×192
Method | Backbone | AP/% | AP50/% | AP75/% | AR/% | AR50/% | AR75/% |
---|---|---|---|---|---|---|---|
DeepPose | ResNet-50 | 42.24 | 83.66 | 36.89 | 57.30 | 90.00 | 58.50 |
ResNet-101 | 41.46 | 85.08 | 35.71 | 57.05 | 91.00 | 58.00 | |
ResNet-152 | 43.04 | 85.46 | 37.07 | 58.40 | 91.00 | 59.00 | |
CPM | CPM | 62.22 | 93.53 | 67.25 | 66.45 | 95.00 | 71.00 |
SCNet | SCNet-50 | 70.15 | 96.86 | 74.54 | 73.95 | 97.00 | 78.00 |
SCNet-101 | 69.45 | 95.78 | 74.36 | 74.10 | 96.50 | 78.50 | |
Lite-HRNet | Lite-HRNet-18 | 68.01 | 92.77 | 73.10 | 72.00 | 94.00 | 76.00 |
Lite-HRNet-30 | 67.23 | 96.64 | 73.01 | 70.55 | 97.00 | 75.00 | |
HPFPE(Ours) | HRNet-W32 | 72.12 | 97.98 | 74.87 | 76.30 | 98.50 | 78.50 |
HRNet-W48 | 72.91 | 96.90 | 78.13 | 76.65 | 97.00 | 80.50 |
Table 8
Comparison with other methods on oplegnathus punctatus data when input size is 384×288
Method | Backbone | AP/% | AP50/% | AP75/% | AR/% | AR50/% | AR75/% |
---|---|---|---|---|---|---|---|
CPM | CPM | 67.26 | 94.42 | 71.60 | 71.85 | 95.50 | 76.00 |
SCNet | SCNet-50 | 71.62 | 96.82 | 75.35 | 75.20 | 97.50 | 78.50 |
SCNet-101 | 71.67 | 96.82 | 77.94 | 75.60 | 97.50 | 81.00 | |
Lite-HRNet | Lite-HRNet-18 | 69.96 | 97.76 | 72.71 | 73.60 | 98.00 | 76.50 |
Lite-HRNet-30 | 70.01 | 93.64 | 75.72 | 73.75 | 95.00 | 78.00 | |
HPFPE(Ours) | HRNet-W32 | 74.05 | 99.01 | 75.82 | 77.85 | 99.50 | 80.00 |
HRNet-W48 | 74.12 | 97.89 | 81.99 | 77.60 | 98.00 | 84.00 |
Table 9
The oplegnathus punctatus data pose estimation results obtained by adding CBAM modules at different positions of HRNet
Method | Backbone | Input size | AP/% | AP50/% | AP75/% | AR/% | AR50/% | AR75/% |
---|---|---|---|---|---|---|---|---|
HRNet+CBAMfront | HRNet-W32 | 256×192 | 71.85 | 95.90 | 78.60 | 75.80 | 96.50 | 81.50 |
HRNet-W32 | 384×288 | 73.46 | 96.88 | 79.33 | 76.75 | 97.50 | 82.00 | |
HRNet-W48 | 256×192 | 71.37 | 96.93 | 76.45 | 75.15 | 97.50 | 80.50 | |
HRNet-W48 | 384×288 | 73.23 | 96.66 | 77.90 | 76.45 | 97.00 | 80.50 | |
HRNet+CBAMfuse | HRNet-W32 | 256×192 | 70.95 | 95.94 | 77.42 | 74.85 | 96.50 | 80.50 |
HRNet-W32 | 384×288 | 71.93 | 95.78 | 75.41 | 76.10 | 96.50 | 78.50 | |
HRNet-W48 | 256×192 | 71.09 | 96.81 | 77.20 | 75.75 | 97.00 | 81.00 | |
HRNet-W48 | 384×288 | 69.61 | 96.96 | 73.95 | 73.05 | 97.00 | 76.50 | |
HRNet+CBAMstage | HRNet-W32 | 256×192 | 71.94 | 93.83 | 80.43 | 75.90 | 95.00 | 82.50 |
HRNet-W32 | 384×288 | 74.02 | 95.94 | 80.49 | 77.40 | 96.50 | 82.50 | |
HRNet-W48 | 256×192 | 71.86 | 95.79 | 81.60 | 76.00 | 96.00 | 84.00 | |
HRNet-W48 | 384×288 | 73.40 | 97.85 | 78.87 | 76.75 | 98.00 | 81.00 |
Table 10
Comparison with other attention mechanisms for pose estimation of CBAM
Attention mechanism | Backbone | Input size | AP/% | AP50/% | AP75/% | AR/% | AR50/% | AR75/% |
---|---|---|---|---|---|---|---|---|
SE[ | HRNet-W32 | 256×192 | 71.53 | 97.89 | 77.95 | 76.30 | 98.00 | 81.00 |
HRNet-W32 | 384×288 | 73.23 | 96.88 | 78.60 | 77.20 | 97.50 | 81.00 | |
HRNet-W48 | 256×192 | 71.55 | 97.95 | 81.97 | 74.95 | 98.50 | 84.00 | |
HRNet-W48 | 384×288 | 72.79 | 96.81 | 78.37 | 76.25 | 97.00 | 81.00 | |
ECA[ | HRNet-W32 | 256×192 | 71.59 | 96.95 | 76.18 | 75.30 | 97.50 | 79.50 |
HRNet-W32 | 384×288 | 72.49 | 97.89 | 79.66 | 77.35 | 98.00 | 83.00 | |
HRNet-W48 | 256×192 | 71.82 | 94.56 | 76.64 | 75.70 | 95.50 | 79.00 | |
HRNet-W48 | 384×288 | 72.79 | 96.81 | 78.37 | 76.25 | 97.00 | 81.00 | |
CA[ | HRNet-W32 | 256×192 | 71.02 | 94.94 | 77.60 | 74.50 | 95.50 | 80.00 |
HRNet-W32 | 384×288 | 73.03 | 97.95 | 77.97 | 75.75 | 98.00 | 80.00 | |
HRNet-W48 | 256×192 | 70.55 | 94.97 | 77.74 | 74.40 | 95.50 | 80.50 | |
HRNet-W48 | 384×288 | 72.82 | 97.86 | 77.39 | 76.75 | 98.00 | 80.00 | |
LSKblock[ | HRNet-W32 | 256×192 | 71.71 | 97.89 | 77.40 | 75.35 | 98.00 | 80.00 |
HRNet-W32 | 384×288 | 72.26 | 96.93 | 77.37 | 75.55 | 97.50 | 79.00 | |
HRNet-W48 | 256×192 | 71.83 | 95.85 | 78.14 | 75.75 | 96.50 | 81.50 | |
HRNet-W48 | 384×288 | 71.89 | 95.95 | 76.91 | 75.00 | 96.00 | 79.00 | |
CBAM[ | HRNet-W32 | 256×192 | 71.94 | 93.83 | 80.43 | 75.90 | 95.00 | 82.50 |
HRNet-W32 | 384×288 | 74.02 | 95.94 | 80.49 | 77.40 | 96.50 | 82.50 | |
HRNet-W48 | 256×192 | 71.86 | 95.79 | 81.60 | 76.00 | 96.00 | 84.00 | |
HRNet-W48 | 384×288 | 73.40 | 97.85 | 78.87 | 76.75 | 98.00 | 81.00 |
Table 11
Ablation experiments of HPFPE on oplegnathus punctatus data
Backbone | Input size | Dilated Convolution | CBAM | AP/% | AP50/% | AP75/% | AR/% | AR50/% | AR75/% |
---|---|---|---|---|---|---|---|---|---|
HRNet-W32 | 256×192 | 71.50 | 96.72 | 76.69 | 75.45 | 97.00 | 79.00 | ||
√ | 71.68 | 95.87 | 79.83 | 75.50 | 96.50 | 82.00 | |||
√ | 71.94 | 93.83 | 80.43 | 75.90 | 95.00 | 82.50 | |||
√ | √ | 72.12 | 97.98 | 74.87 | 76.30 | 98.50 | 78.50 | ||
HRNet-W32 | 384×288 | 72.70 | 96.95 | 78.77 | 76.35 | 97.50 | 81.00 | ||
√ | 73.09 | 96.95 | 78.29 | 76.95 | 97.50 | 80.50 | |||
√ | 74.02 | 95.94 | 80.49 | 77.40 | 96.50 | 82.50 | |||
√ | √ | 74.05 | 99.01 | 75.82 | 77.85 | 99.50 | 80.00 | ||
HRNet-W48 | 256×192 | 71.15 | 94.53 | 77.39 | 75.25 | 95.50 | 80.50 | ||
√ | 72.11 | 96.83 | 77.80 | 75.95 | 97.50 | 80.50 | |||
√ | 71.86 | 95.79 | 81.60 | 76.00 | 96.00 | 84.00 | |||
√ | √ | 72.91 | 96.90 | 78.13 | 76.65 | 97.00 | 80.50 | ||
HRNet-W48 | 384×288 | 72.84 | 96.66 | 80.74 | 76.60 | 97.00 | 82.50 | ||
√ | 73.49 | 96.89 | 79.16 | 77.15 | 97.00 | 82.00 | |||
√ | 73.40 | 97.85 | 78.87 | 76.75 | 98.00 | 81.00 | |||
√ | √ | 74.12 | 97.89 | 81.99 | 77.60 | 98.00 | 84.00 |
Table 12
Comparison with five methods on ornamental fish data
Method | Backbone | Input size | AP/% | AP50/% | AP75/% | AR/% | AR50/% | AR75/% |
---|---|---|---|---|---|---|---|---|
DeepPose | ResNet-50 | 256×192 | 4.05 | 21.50 | 0.20 | 11.25 | 40.00 | 2.50 |
ResNet-101 | 256×192 | 7.66 | 30.80 | 0.00 | 13.75 | 50.00 | 0.00 | |
ResNet-152 | 256×192 | 8.48 | 32.07 | 0.08 | 16.00 | 50.00 | 2.50 | |
CPM | CPM | 256×192 | 27.25 | 84.78 | 6.01 | 34.50 | 85.00 | 17.50 |
CPM | 384×288 | 33.76 | 89.88 | 18.92 | 42.50 | 90.00 | 37.50 | |
SCNet | SCNet-50 | 256×192 | 44.04 | 89.89 | 40.68 | 51.25 | 90.00 | 55.00 |
SCNet-50 | 384×288 | 49.00 | 85.20 | 50.85 | 55.50 | 87.50 | 62.50 | |
SCNet-101 | 256×192 | 47.20 | 94.06 | 44.68 | 54.25 | 95.00 | 55.00 | |
SCNet-101 | 384×288 | 50.37 | 93.88 | 56.17 | 58.50 | 95.00 | 65.00 | |
Lite-HRNet | Lite-HRNet-18 | 256×192 | 39.67 | 89.97 | 30.35 | 47.00 | 90.00 | 45.00 |
Lite-HRNet-18 | 384×288 | 45.72 | 94.06 | 35.12 | 52.50 | 95.00 | 50.00 | |
Lite-HRNet-30 | 256×192 | 39.82 | 80.55 | 41.12 | 46.75 | 82.50 | 55.00 | |
Lite-HRNet-30 | 384×288 | 43.02 | 90.10 | 37.32 | 50.75 | 90.00 | 52.50 | |
HRNet | HRNet-W32 | 256×192 | 47.63 | 92.03 | 40.77 | 55.50 | 92.50 | 55.00 |
HRNet-W32 | 384×288 | 48.11 | 89.25 | 41.87 | 56.00 | 90.00 | 57.50 | |
HRNet-W48 | 256×192 | 47.25 | 87.13 | 42.85 | 52.50 | 87.50 | 55.00 | |
HRNet-W48 | 384×288 | 50.76 | 94.06 | 40.92 | 58.25 | 95.00 | 57.50 | |
HPFPE(Ours) | HRNet-W32 | 256×192 | 47.88 | 92.03 | 33.28 | 54.25 | 92.50 | 50.00 |
HRNet-W32 | 384×288 | 49.50 | 90.46 | 38.23 | 56.25 | 92.50 | 55.00 | |
HRNet-W48 | 256×192 | 48.54 | 84.91 | 44.25 | 55.50 | 87.50 | 57.50 | |
HRNet-W48 | 384×288 | 52.96 | 91.18 | 52.67 | 59.50 | 92.50 | 62.50 |
1 |
|
2 |
|
3 |
|
4 |
|
5 |
|
6 |
|
7 |
|
8 |
DAS S,
|
9 |
|
10 |
|
11 |
|
12 |
|
13 |
|
14 |
|
15 |
|
16 |
|
17 |
|
18 |
|
19 |
|
20 |
|
21 |
|
22 |
|
23 |
WOO S,
|
24 |
|
25 |
|
26 |
|
27 |
|
28 |
|
29 |
|
30 |
|
[1] | LI Zusheng, TANG Jishen, KUANG Yingchun. A Lightweight Model for Detecting Small Targets of Litchi Pests Based on Improved YOLOv10n [J]. Smart Agriculture, 2025, 7(2): 146-159. |
[2] | NIU Ziang, QIU Zhengjun. Extraction Method of Maize Plant Skeleton and Phenotypic Parameters Based on Improved YOLOv11-Pose [J]. Smart Agriculture, 2025, 7(2): 95-105. |
[3] | WU Liuai, XU Xueke. Lightweight Tomato Leaf Disease and Pest Detection Method Based on Improved YOLOv10n [J]. Smart Agriculture, 2025, 7(1): 146-155. |
[4] | QUAN Jialu, CHEN Wenbai, WANG Yiqun, CHENG Jiajing, LIU Yilong. Research on Agricultural Drought Prediction Based on GCN-BiGRU-STMHSA [J]. Smart Agriculture, 2025, 7(1): 156-164. |
[5] | QI Zijun, NIU Dangdang, WU Huarui, ZHANG Lilin, WANG Lunfeng, ZHANG Hongming. Chinese Kiwifruit Text Named Entity Recognition Method Based on Dual-Dimensional Information and Pruning [J]. Smart Agriculture, 2025, 7(1): 44-56. |
[6] | ZHOU Xiushan, WEN Luting, JIE Baifei, ZHENG Haifeng, WU Qiqi, LI Kene, LIANG Junneng, LI Yijian, WEN Jiayan, JIANG Linyuan. Real-time Detection Algorithm of Expanded Feed Image on the Water Surface Based on Improved YOLOv11 [J]. Smart Agriculture, 2024, 6(6): 155-167. |
[7] | HU Chengxi, TAN Lixin, WANG Wenyin, SONG Min. Lightweight Tea Shoot Picking Point Recognition Model Based on Improved DeepLabV3+ [J]. Smart Agriculture, 2024, 6(5): 119-127. |
[8] | LI Minghuang, SU Lide, ZHANG Yong, ZONG Zheying, ZHANG Shun. Automatic Measurement of Mongolian Horse Body Based on Improved YOLOv8n-pose and 3D Point Cloud Analysis [J]. Smart Agriculture, 2024, 6(4): 91-102. |
[9] | WENG Zhi, FAN Qi, ZHENG Zhiqiang. Automatic Measurement Method of Beef Cattle Body Size Based on Multimodal Image Information and Improved Instance Segmentation Network [J]. Smart Agriculture, 2024, 6(4): 64-75. |
[10] | FAN Mingshuo, ZHOU Ping, LI Miao, LI Hualong, LIU Xianwang, MA Zhirun. Automatic Navigation and Spraying Robot in Sheep Farm [J]. Smart Agriculture, 2024, 6(4): 103-115. |
[11] | HOU Yiting, RAO Yuan, SONG He, NIE Zhenjun, WANG Tan, HE Haoxu. A Rapid Detection Method for Wheat Seedling Leaf Number in Complex Field Scenarios Based on Improved YOLOv8 [J]. Smart Agriculture, 2024, 6(4): 128-137. |
[12] | WENG Zhi, LIU Haixin, ZHENG Zhiqiang. CSD-YOLOv8s: Dense Sheep Small Target Detection Model Based on UAV Images [J]. Smart Agriculture, 2024, 6(4): 42-52. |
[13] | WANG Yuxiao, SHI Yuanyuan, CHEN Zhaoda, WU Zhenfang, CAI Gengyuan, ZHANG Sumin, YIN Ling. Pig Back Transformer: Automatic 3D Pig Body Measurement Model [J]. Smart Agriculture, 2024, 6(4): 76-90. |
[14] | DAI Xin, WANG Junhao, ZHANG Yi, WANG Xinjie, LI Yanxing, DAI Baisheng, SHEN Weizheng. Automatic Detection Method of Dairy Cow Lameness from Top-view Based on the Fusion of Spatiotemporal Stream Features [J]. Smart Agriculture, 2024, 6(4): 18-28. |
[15] | ZHU Yiping, WU Huarui, GUO Wang, WU Xiaoyan. Identification Method of Kale Leaf Ball Based on Improved UperNet [J]. Smart Agriculture, 2024, 6(3): 128-137. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||