WANG Yi1, XUE Rong1, HAN Wenting2(), SHAO Guomin3, HOU Yanqiao1, CUI Xitong1
Received:
2024-12-01
Online:
2025-06-27
Foundation items:
Shaanxi Province Natural Science Basic Research Program(2022JQ-363); Shaanxi Provincial Social Science Foundation Program(2021R022); Shaanxi Provincial Key Research and Development Program(S2024-YF-ZDCXL-ZDLNY-0158)
About author:
WANG Yi, E-mail: wang_yi@xaufe.edu.cn
corresponding author:
CLC Number:
WANG Yi, XUE Rong, HAN Wenting, SHAO Guomin, HOU Yanqiao, CUI Xitong. Estimation of Corn Aboveground Biomass Based on CNN-LSTM-SA[J]. Smart Agriculture, doi: 10.12133/j.smartag.SA202412004.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202412004
Table 1
Actual irrigation and rainfall in the experimental area in 2019
水分处理区域 | 快速生长期(DAP: 30—73d) | 生长中期(DAP: 74—104d) | 生长后期(DAP: 105—125d) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
灌溉量/mm | 降雨量/mm | 总量/mm | 灌溉量/mm | 降雨量/mm | 总量/mm | 灌溉量/mm | 降雨量/mm | 总量/mm | ||
T1 | 56.0 | 19.6 | 75.6 | 68.3 | 94.2 | 162.5 | 12.0 | 0 | 12.0 | |
T2 | 36.4 | 19.6 | 56.0 | 56.3 | 94.2 | 150.5 | 7.8 | 0 | 7.8 | |
T3 | 22.4 | 19.6 | 42.0 | 64.6 | 94.2 | 158.8 | 9.6 | 0 | 9.6 | |
T4 | 36.4 | 19.6 | 56.0 | 46.8 | 94.2 | 141.0 | 7.8 | 0 | 7.8 | |
T5 | 22.4 | 19.6 | 42.0 | 51.3 | 94.2 | 145.5 | 4.8 | 0 | 4.8 |
Table 2
Main parameters of UAV image acquisition system
无人机系统 | 主要参数 | 参数值 |
---|---|---|
无人机可见光图像采集系统 | 重量/g | 1388 |
飞行时间/min | 30 | |
通行半径/km | 5 | |
飞行速度/km/s | <72 | |
像素 | 5 472×3 648 | |
焦距/mm | 8.8/24 | |
视场角/(°) | 84 | |
传感器 | 1英寸CMOS | |
RGB颜色空间 | sRGB | |
ISO范围 | 100~12 800 | |
快门速度/s | 8~1/8 000 | |
图像格式 | JPEG、DNG | |
无人机多光谱图像采集系统 | 轴距/mm | 900 |
起飞重量/kg | 6 | |
载重/kg | 2 | |
飞行时间/min | 18 | |
通信半径/km | 3 | |
飞行速度/(m/s) | 5 | |
搭载相机 | MicaSense RedEdge-M | |
像素 | 1 280×960 | |
数据格式 | 12位Raw | |
光谱波段 | 蓝、绿、红、近红外、红边 | |
焦距/mm | 9.6 | |
视场角/(°) | 47.2 |
Table 4
Formulas of major vegetation indices applied in maize AGB estimation
植被指数 | 公式 |
---|---|
归一化差值植被指数(Normalized Difference Vegetation Index, NDVI )[ | (1) |
土壤调整植被指数(Soil Adjusted Vegetation Index, SAVI)[ | (2) |
增强型植被指数(Enhanced Vegetation Index, EVI)[ | (3) |
改进型叶绿素吸收植被指数(Transformed Chlorophyll Absorption In Reflectance Index,TCARI)[ | (4) |
绿度归一化植被指数(Green Normalized Difference Vegetation Index, GNDVI)[ | (5) |
抗大气指数(Visualized Atmospheric Resistance Index, VARI)[ | (6) |
比值植被指数(Simple Ratio, SR)[ | (7) |
归一化差异红边指数(Normalized Difference Red Edge Index, NDRE)[ | (8) |
标准化差值红边指数(Improved Normalized Difference Red Edge Index, NDERI)[ | (9) |
改进的叶绿素吸收反射指数(Modified Chlorophyll Absorption in Reflectance Index, MCARI)[ | (10) |
Table 8
Comparison of performance evaluation metrics of the CNN-LSTM-SA model with different feature parameter combinations
特征参数 | R 2 | RMSE/( g/m2) | MAE/( g/m2) |
---|---|---|---|
H,LAI,Tc,RH,Rn,U2,EVI,GNDVI,NDVI,TCARI,SR,NDREI,MCARI | 0.89 | 129.38 | 65.99 |
H,LAI,Tc,RH,Rn,EVI,GNDVI,NDVI,TCARI,SR,NDREI,MCARI | 0.92 | 107.53 | 55.19 |
H,LAI,Tc,Rn,EVI,GNDVI,NDVI,TCARI,SR,NDREI,MCARI | 0.88 | 134.06 | 76.01 |
H,LAI,Tc,Rn,EVI,GNDVI,NDVI,SR,NDREI,MCARI | 0.83 | 161.46 | 89.76 |
H,LAI,Tc,Rn,GNDVI,NDVI,SR,NDREI,MCARI | 0.81 | 170.03 | 92.41 |
1 |
李娜. 玉米秸秆青贮饲料关键技术分析[J]. 农业科技与发展, 2022, 1(3): 137-139.
|
|
|
2 |
|
3 |
|
4 |
|
5 |
|
6 |
|
7 |
|
8 |
|
9 |
|
10 |
|
11 |
|
12 |
|
13 |
|
14 |
|
15 |
|
16 |
|
17 |
|
18 |
|
19 |
|
20 |
肖武, 陈佳乐, 笪宏志, 等. 基于无人机影像的采煤沉陷区玉米生物量反演与分析[J]. 农业机械学报, 2018, 49(8): 169-180.
|
|
|
21 |
|
22 |
|
23 |
|
24 |
|
25 |
|
26 |
|
27 |
陈雨烨, 王培娟, 张源达, 等. 基于3种遥感指数的东北春玉米干旱识别对比[J]. 应用气象学报, 2022, 33(4): 466-476.
|
|
|
28 |
|
29 |
|
30 |
|
31 |
|
32 |
|
33 |
张慧, 李平衡, 周国模, 等. 植被指数的地形效应研究进展[J]. 应用生态学报, 2018, 29(2): 669-677.
|
|
|
34 |
束美艳, 顾晓鹤, 孙林, 等. 基于新型植被指数的冬小麦LAI高光谱反演[J]. 中国农业科学, 2018, 51(18): 3486-3496.
|
|
|
35 |
邵亚杰, 李珂, 丁文浩, 等. 基于无人机多光谱影像特征估算棉花生物量[J]. 新疆农业科学, 2024, 61(6): 1328-1335.
|
|
|
36 |
|
37 |
|
38 |
|
39 |
|
40 |
|
41 |
|
42 |
|
43 |
|
44 |
|
45 |
|
46 |
|
47 |
|
48 |
|
49 |
|
50 |
|
51 |
|
52 |
|
[1] | NIU Ziang, QIU Zhengjun. Extraction Method of Maize Plant Skeleton and Phenotypic Parameters Based on Improved YOLOv11-Pose [J]. Smart Agriculture, 2025, 7(2): 95-105. |
[2] | QUAN Jialu, CHEN Wenbai, WANG Yiqun, CHENG Jiajing, LIU Yilong. Research on Agricultural Drought Prediction Based on GCN-BiGRU-STMHSA [J]. Smart Agriculture, 2025, 7(1): 156-164. |
[3] | LI Minghuang, SU Lide, ZHANG Yong, ZONG Zheying, ZHANG Shun. Automatic Measurement of Mongolian Horse Body Based on Improved YOLOv8n-pose and 3D Point Cloud Analysis [J]. Smart Agriculture, 2024, 6(4): 91-102. |
[4] | WANG Yuxiao, SHI Yuanyuan, CHEN Zhaoda, WU Zhenfang, CAI Gengyuan, ZHANG Sumin, YIN Ling. Pig Back Transformer: Automatic 3D Pig Body Measurement Model [J]. Smart Agriculture, 2024, 6(4): 76-90. |
[5] | ZHANG Jun, CHEN Yuyan, QIN Zhenyu, ZHANG Mengyao, ZHANG Jun. Remote Sensing Extraction Method of Terraced Fields Based on Improved DeepLab v3+ [J]. Smart Agriculture, 2024, 6(3): 46-57. |
[6] | SHEN Yanyan, ZHAO Yutao, CHEN Gengshen, LYU Zhengang, ZHAO Feng, YANG Wanneng, MENG Ran. Identification and Severity Classification of Typical Maize Foliar Diseases Based on Hyperspectral Data [J]. Smart Agriculture, 2024, 6(2): 28-39. |
[7] | ZUO Haoxuan, HUANG Qicheng, YANG Jiahao, MENG Fanjia, LI Sien, LI Li. In Situ Identification Method of Maize Stalk Width Based on Binocular Vision and Improved YOLOv8 [J]. Smart Agriculture, 2023, 5(3): 86-95. |
[8] | ZUO Min, HU Tianyu, DONG Wei, ZHANG Kexin, ZHANG Qingchuan. Forecast and Analysis of Agricultural Products Logistics Demand Based on Informer Neural Network: Take the Central China Aera as An Example [J]. Smart Agriculture, 2023, 5(1): 34-43. |
[9] | ZHOU Qiaoli, MA Li, CAO Liying, YU Helong. Identification of Tomato Leaf Diseases Based on Improved Lightweight Convolutional Neural Networks MobileNetV3 [J]. Smart Agriculture, 2022, 4(1): 47-56. |
[10] | LI Shuangwei, ZHU Junqi, EVERS Jochem B., VAN DER WERF Wopke, GUO Yan, LI Baoguo, MA Yuntao. Estimating the Differences of Light Capture Between Rows Based on Functional-Structural Plant Model in Simultaneous Maize-Soybean Strip Intercropping [J]. Smart Agriculture, 2022, 4(1): 97-109. |
[11] | SHAO Mingyue, ZHANG Jianhua, FENG Quan, CHAI Xiujuan, ZHANG Ning, ZHANG Wenrong. Research Progress of Deep Learning in Detection and Recognition of Plant Leaf Diseases [J]. Smart Agriculture, 2022, 4(1): 29-46. |
[12] | WANG Ying, LI Yue, WU Tingting, SUN Shi, WANG Minjuan. Fast Counting Method of Soybean Seeds Based on Density Estimation and VGG-Two [J]. Smart Agriculture, 2021, 3(4): 111-122. |
[13] | YANG Jin, MING Bo, YANG Fei, XU Honggen, LI Lulu, GAO Shang, LIU Chaowei, WANG Keru, LI Shaokun. The Accuracy Differences of Using Unmanned Aerial Vehicle Images Monitoring Maize Plant Height at Different Growth Stages [J]. Smart Agriculture, 2021, 3(3): 129-138. |
[14] | WANG Weidan, SUN Li, PEI Zhiyuan, MA Shangjie, CHEN Yuanyuan, SUN Juanying, DONG Mo. Effect of Growing Season Drought and Flood on Yield of Spring Maize in Three Northeast Provinces of China [J]. Smart Agriculture, 2021, 3(2): 126-137. |
[15] | ZHANG Xiaoqing, SHAO Song, GUO Xinyu, FAN Jiangchuan. High-Throughput Dynamic Monitoring Method of Field Maize Seedling [J]. Smart Agriculture, 2021, 3(2): 88-99. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||