WANG Yuxi1, HUANG Lyuwen1,2(), DUAN Xiaolin1
Received:
2025-02-20
Online:
2025-05-22
Foundation items:
National Key R&D Program of China(2020YFD1100601)
About author:
WANG Yuxi. E-mail: 2023056150@nwafu.edu.cn
corresponding author:
CLC Number:
WANG Yuxi, HUANG Lyuwen, DUAN Xiaolin. RIME2-VMD-LSTM: A Dynamic Prediction Model of Crop Canopy Temperature Based on VMD-LSTM[J]. Smart Agriculture, doi: 10.12133/j.smartag.SA202502015.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202502015
Table 3
Prediction results of decomposition combination models with L in=8 of model forecasting study (Unit: ℃)
Number of neurons/cell | LSTM | EMD-LSTM | CEEMDAN-LSTM | |||
---|---|---|---|---|---|---|
MSE | MAE | MSE | MAE | MSE | MAE | |
50 | 0.479 0 | 0.535 0 | 0.215 0 | 0.303 5 | 0.216 5 | 0.280 5 |
100 | 0.456 5 | 0.473 0 | 0.148 0 | 0.278 0 | 0.329 0 | 0.348 0 |
150 | 0.909 5 | 0.786 5 | 0.188 5 | 0.304 0 | 0.169 5 | 0.272 0 |
200 | 0.327 0 | 0.389 0 | 0.249 5 | 0.310 5 | 0.215 5 | 0.302 5 |
250 | 0.405 5 | 0.447 5 | 0.233 0 | 0.326 5 | 0.289 5 | 0.337 0 |
Number of neurons/cell | VMD-LSTM | SGMD-LSTM | TVF-EMD-LSTM | |||
MSE | MAE | MSE | MAE | MSE | MAE | |
50 | 0.101 5 | 0.192 5 | 0.185 0 | 0.262 5 | 0.178 5 | 0.242 5 |
100 | 0.095 0 | 0.195 0 | 0.464 0 | 0.380 0 | 0.186 5 | 0.261 5 |
150 | 0.100 5 | 0.203 0 | 0.675 5 | 0.432 5 | 0.175 0 | 0.252 5 |
200 | 0.127 0 | 0.213 0 | 0.409 5 | 0.398 0 | 0.205 0 | 0.299 0 |
250 | 0.114 5 | 0.225 0 | 0.261 5 | 0.335 0 | 0.209 5 | 0.299 5 |
Table 4
Prediction results of decomposition combination models with L in=16 of model forecasting study Unit: ℃
Number of neurons/cell | LSTM | EMD-LSTM | CEEMDAN-LSTM | |||
---|---|---|---|---|---|---|
MSE | MAE | MSE | MAE | MSE | MAE | |
50 | 0.563 0 | 0.548 5 | 0.336 5 | 0.402 5 | 0.318 0 | 0.325 0 |
100 | 0.414 0 | 0.427 5 | 0.270 0 | 0.368 5 | 0.487 0 | 0.481 0 |
150 | 0.568 0 | 0.529 0 | 0.481 0 | 0.495 5 | 0.367 0 | 0.427 5 |
200 | 0.323 5 | 0.405 5 | 0.380 5 | 0.477 0 | 0.421 0 | 0.425 0 |
250 | 0.502 0 | 0.477 5 | 0.601 5 | 0.510 5 | 0.380 0 | 0.413 0 |
Number of neurons/cell | VMD-LSTM | SGMD-LSTM | TVF-EMD-LSTM | |||
MSE | MAE | MSE | MAE | MSE | MAE | |
50 | 0.273 5 | 0.325 5 | 0.282 5 | 0.369 5 | 0.416 5 | 0.415 5 |
100 | 0.282 0 | 0.390 5 | 0.437 0 | 0.475 5 | 0.348 0 | 0.440 5 |
150 | 0.257 0 | 0.320 0 | 0.930 5 | 0.604 0 | 0.273 5 | 0.370 0 |
200 | 0.250 0 | 0.326 5 | 0.713 5 | 0.543 5 | 0.267 0 | 0.357 0 |
250 | 0.278 0 | 0.325 0 | 0.662 5 | 0.524 5 | 0.249 0 | 0.315 5 |
Table 5
Predicted results with different optimization algorithms of model forecasting study Unit: ℃
Temp | comparison models | Next 1 hour | Next 2 hours | Next 3 hours | Average | ||||
---|---|---|---|---|---|---|---|---|---|
RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | ||
Kiwi Canopy | VMD-PSO-LSTM | 1.498 0 | 0.943 8 | 2.958 7 | 1.818 0 | 4.251 3 | 2.604 3 | 2.902 7 | 1.788 7 |
VMD-SSA-LSTM | 1.478 2 | 0.903 2 | 2.912 4 | 1.756 9 | 4.170 3 | 2.502 7 | 2.853 6 | 1.720 9 | |
VMD-GWO-LSTM | 1.481 3 | 0.915 8 | 2.897 2 | 2.302 2 | 4.186 4 | 2.549 6 | 2.855 0 | 1.922 5 | |
VMD-SAO-LSTM | 1.504 5 | 0.919 1 | 3.041 4 | 1.850 3 | 4.397 6 | 2.680 5 | 2.981 2 | 1.816 6 | |
VMD-RIME-LSTM | 1.465 8 | 0.900 7 | 2.873 9 | 1.732 1 | 4.196 3 | 2.522 8 | 2.845 3 | 1.718 5 | |
Grapes canopy | VMD-PSO-LSTM | 1.371 2 | 0.882 4 | 2.620 0 | 1.770 5 | 3.685 6 | 2.581 5 | 2.558 9 | 1.744 8 |
VMD-SSA-LSTM | 1.401 1 | 0.879 7 | 2.580 0 | 1.774 3 | 3.667 4 | 2.570 0 | 2.549 5 | 1.741 3 | |
VMD-GWO-LSTM | 1.418 7 | 0.902 8 | 2.664 6 | 1.756 5 | 3.744 4 | 2.514 0 | 2.609 2 | 1.724 4 | |
VMD-SAO-LSTM | 1.357 5 | 0.876 6 | 2.564 9 | 1.733 8 | 3.632 2 | 2.526 8 | 2.518 2 | 1.712 4 | |
VMD-RIME-LSTM | 1.378 6 | 0.897 3 | 2.611 8 | 1.731 0 | 3.635 7 | 2.459 3 | 2.542 0 | 1.695 9 |
Table 6
Results of ablation experiment of model forecasting study
Temp | Comparison models | Next 1 hour | Next 2 hours | Next 3 hours | ||||||
---|---|---|---|---|---|---|---|---|---|---|
RMSE/℃ | MAE/℃ | R 2 | RMSE/℃ | MAE/℃ | R 2 | RMSE/℃ | MAE/℃ | R 2 | ||
Kiwi canopy | LSTM | 1.926 3 | 1.195 8 | 0.829 5 | 2.819 4 | 1.871 4 | 0.731 9 | 4.717 0 | 2.564 3 | 0.412 1 |
VMD-LSTM | 1.734 1 | 1.200 3 | 0.876 5 | 2.805 2 | 1.760 6 | 0.769 4 | 4.437 4 | 2.976 8 | 0.491 2 | |
RIME-LSTM | 1.933 3 | 1.234 3 | 0.849 1 | 2.842 6 | 1.930 9 | 0.890 1 | 4.196 3 | 2.522 8 | 0.477 7 | |
RIME-VMD-LSTM | 1.708 5 | 1.174 5 | 0.879 8 | 3.205 2 | 2.125 6 | 0.756 9 | 4.548 9 | 3.005 0 | 0.347 7 | |
VMD-RIME-LSTM | 1.465 8 | 0.937 9 | 0.911 7 | 2.912 4 | 1.756 9 | 0.761 6 | 4.096 6 | 2.613 6 | 0.509 6 | |
Proposed model | 1.446 6 | 0.900 7 | 0.963 9 | 1.734 1 | 2.116 0 | 0.906 3 | 3.678 9 | 2.547 1 | 0.655 9 | |
Grape canopy | LSTM | 1.860 6 | 1.259 0 | 0.841 7 | 2.997 6 | 2.099 4 | 0.648 7 | 4.038 2 | 2.926 3 | 0.425 3 |
VMD-LSTM | 1.610 8 | 1.194 9 | 0.923 2 | 2.734 0 | 1.936 2 | 0.663 5 | 3.753 1 | 2.611 0 | 0.465 9 | |
RIME-LSTM | 1.810 8 | 1.250 5 | 0.884 8 | 2.772 0 | 1.837 6 | 0.653 0 | 3.937 5 | 2.666 9 | 0.299 9 | |
RIME-VMD-LSTM | 1.574 5 | 1.125 0 | 0.888 1 | 2.686 4 | 1.852 2 | 0.674 1 | 3.731 2 | 2.598 4 | 0.371 4 | |
VMD-RIME-LSTM | 1.465 8 | 0.924 6 | 0.914 4 | 2.611 8 | 1.731 0 | 0.692 9 | 4.196 3 | 2.522 8 | 0.476 7 | |
Proposed model | 1.378 6 | 0.897 3 | 0.973 0 | 1.810 8 | 1.250 5 | 0.914 8 | 1.810 8 | 1.250 5 | 0.644 8 |
Table 7
Average results of ablation experiments on two kinds of datasets of model forecasting study
Comparison models | Next 1 hour | Next 2 hours | Next 3 hours | ||||||
---|---|---|---|---|---|---|---|---|---|
RMSE | MAE | R 2 | RMSE | MAE | R 2 | RMSE | MAE | R 2 | |
LSTM | 1.893 5 | 1.227 4 | 0.835 6 | 2.908 5 | 1.985 4 | 0.690 3 | 4.377 6 | 2.745 3 | 0.418 7 |
VMD-LSTM | 1.672 4 | 1.197 6 | 0.899 8 | 2.769 6 | 1.848 4 | 0.716 5 | 4.095 2 | 2.793 9 | 0.478 6 |
RIME-LSTM | 1.872 1 | 1.242 4 | 0.867 0 | 2.807 3 | 1.884 2 | 0.771 6 | 4.066 9 | 2.594 8 | 0.388 8 |
RIME-VMD-LSTM | 1.641 5 | 1.149 8 | 0.883 9 | 2.945 8 | 1.988 9 | 0.715 5 | 4.140 0 | 2.801 7 | 0.359 5 |
VMD-RIME-LSTM | 1.465 8 | 0.931 3 | 0.913 1 | 2.762 1 | 1.744 0 | 0.727 3 | 4.146 4 | 2.568 2 | 0.493 2 |
Proposed model | 1.412 6 | 0.899 0 | 0.968 4 | 1.772 4 | 1.683 2 | 0.910 5 | 2.744 9 | 1.898 8 | 0.650 4 |
Table 8
Increase/decrease of indicators between the proposed model and the comparative models of model forecasting study (%)
Comparison models | Next 1 hour | Next 2 hours | Next 3 hours | ||||||
---|---|---|---|---|---|---|---|---|---|
RMSE | MAE | R 2 | RMSE | MAE | R 2 | RMSE | MAE | R 2 | |
LSTM | -25.39 | -26.75 | 15.90 | -39.06 | -15.22 | 31.91 | -37.30 | -30.84 | 55.33 |
VMD-LSTM | -15.53 | -24.93 | 7.62 | -36.00 | -8.93 | 27.09 | -32.97 | -32.04 | 35.90 |
RIME-LSTM | -24.54 | -27.64 | 11.71 | -36.86 | -10.67 | 18.01 | -32.51 | -26.82 | 67.28 |
RIME-VMD-LSTM | -13.94 | -21.81 | 9.56 | -39.83 | -15.37 | 27.26 | -33.70 | -32.23 | 80.89 |
VMD-RIME-LSTM | -3.63 | -3.46 | 6.06 | -35.83 | -3.48 | 25.20 | -33.80 | -26.07 | 31.87 |
Table 9
Comparison of indicators between the proposed model and the comparative models (kiwi)
Models | Original data | Uniform noise | Gaussian noise | ||||||
---|---|---|---|---|---|---|---|---|---|
RMSE/℃ | MAE/℃ | R 2 | RMSE/℃ | MAE/℃ | R 2 | RMSE/℃ | MAE/℃ | R 2 | |
CNN | 0.497 2 | 0.316 2 | 0.990 0 | 3.347 3 | 2.794 1 | 0.657 6 | 5.548 9 | 4.416 5 | 0.372 4 |
GRU | 0.946 0 | 0.586 6 | 0.963 7 | 3.669 9 | 3.017 0 | 0.588 4 | 7.056 5 | 5.617 2 | -0.015 0 |
LSTM | 0.529 8 | 0.457 0 | 0.978 5 | 13.896 2 | 3.034 6 | 0.575 3 | 6.320 2 | 5.138 7 | 0.237 4 |
ConvLSTM | 1.150 7 | 1.521 4 | 0.798 0 | 4.003 4 | 3.246 3 | 0.510 2 | 7.170 9 | 5.696 1 | -0.048 1 |
PC-LSTM | 0.779 1 | 0.601 0 | 0.975 4 | 4.050 9 | 3.271 2 | 0.498 5 | 7.592 3 | 6.008 1 | -0.174 9 |
Proposed model | 0.360 1 | 0.254 3 | 0.994 7 | 1.501 0 | 1.214 2 | 0.929 7 | 3.885 5 | 3.080 7 | 0.678 9 |
Table 10
Comparison of indicators between the proposed model and the comparative models (grape)
Models | Original data | Uniform noise | Gaussian noise | ||||||
---|---|---|---|---|---|---|---|---|---|
RMSE/℃ | MAE/℃ | R 2 | RMSE/℃ | MAE/℃ | R 2 | RMSE/℃ | MAE/℃ | R 2 | |
CNN | 0.525 4 | 0.344 4 | 0.987 8 | 3.999 9 | 3.230 0 | 0.486 5 | 5.860 3 | 4.663 9 | 0.297 0 |
GRU | 1.092 1 | 0.730 6 | 0.947 2 | 4.221 0 | 3.409 7 | 0.428 2 | 7.484 9 | 6.001 6 | -0.146 8 |
LSTM | 3.321 1 | 1.029 0 | 0.853 1 | 18.878 4 | 3.516 5 | 0.394 1 | 54.543 2 | 5.919 4 | -0.116 5 |
ConvLSTM | 1.646 0 | 1.145 8 | 0.880 2 | 6.559 2 | 5.034 7 | -0.380 9 | 7.622 9 | 6.137 6 | -0.189 5 |
PC-LSTM | 0.889 3 | 0.669 8 | 0.965 0 | 4.778 1 | 3.864 1 | 0.267 3 | 8.596 2 | 6.878 1 | -0.512 7 |
Proposed model | 0.287 0 | 0.185 7 | 0.996 3 | 1.029 4 | 0.817 9 | 0.961 3 | 2.065 0 | 1.656 8 | 0.903 4 |
1 |
|
2 |
|
3 |
|
4 |
|
5 |
|
6 |
|
7 |
|
8 |
|
9 |
|
10 |
|
11 |
|
12 |
|
13 |
|
14 |
|
15 |
|
16 |
|
17 |
|
18 |
|
19 |
|
20 |
|
21 |
|
22 |
|
23 |
|
24 |
|
25 |
|
26 |
|
27 |
|
28 |
|
29 |
|
30 |
|
31 |
|
[1] | ZHANG Yu, LI Xiangting, SUN Yalin, XUE Aidi, ZHANG Yi, JIANG Hailong, SHEN Weizheng. Real-Time Monitoring Method for Cow Rumination Behavior Based on Edge Computing and Improved MobileNet v3 [J]. Smart Agriculture, 2024, 6(4): 29-41. |
[2] | SHI Jiefeng, HUANG Wei, FAN Xieyang, LI Xiuhua, LU Yangxu, JIANG Zhuhui, WANG Zeping, LUO Wei, ZHANG Muqing. Yield Prediction Models in Guangxi Sugarcane Planting Regions Based on Machine Learning Methods [J]. Smart Agriculture, 2023, 5(2): 82-92. |
[3] | ZUO Min, HU Tianyu, DONG Wei, ZHANG Kexin, ZHANG Qingchuan. Forecast and Analysis of Agricultural Products Logistics Demand Based on Informer Neural Network: Take the Central China Aera as An Example [J]. Smart Agriculture, 2023, 5(1): 34-43. |
[4] | XU Yulin, KANG Mengzhen, WANG Xiujuan, HUA Jing, WANG Haoyu, SHEN Zhen. Corn and Soybean Futures Price Intelligent Forecasting Based on Deep Learning [J]. Smart Agriculture, 2022, 4(4): 156-163. |
[5] | ZHUANG Jiayu, XU Shiwei, LI Yang, XIONG Lu, LIU Kebao, ZHONG Zhiping. Supply and Demand Forecasting Model of Multi-Agricultural Products Based on Deep Learning [J]. Smart Agriculture, 2022, 4(2): 174-182. |
[6] | LI Liangde, WANG Xiujuan, KANG Mengzhen, HUA Jing, FAN Menghan. Agricultural Named Entity Recognition Based on Semantic Aggregation and Model Distillation [J]. Smart Agriculture, 2021, 3(1): 118-128. |
[7] | Zhu Hang, Li Hongze, Huang Yu, Yu Haitao, Dong Yunzhe, Li Junxing. Effects of technical operation parameters on spray characteristics of rotor plant protection UAV [J]. Smart Agriculture, 2019, 1(3): 113-122. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||