| [1] |
MOHANTY S P, HUGHES D P, SALATHÉ M. Using deep learning for image-based plant disease detection[J]. Frontiers in plant science, 2016, 7: ID 1419.
|
| [2] |
杨翰琨, 朱博威, 张彦敏, 等. 基于深度学习的植物病害图像识别算法综述[J]. 电子技术应用, 2025, 51(1): 1-7.
|
|
YANG H K, ZHU B W, ZHANG Y M, et al. Review of plant disease image recognition algorithms based on deep learning[J]. Application of electronic technique, 2025, 51(1): 1-7.
|
| [3] |
KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[J]. Communications of the acm, 2017, 60(6): 84-90.
|
| [4] |
BADGUJAR C M, POULOSE A, GAN H. Agricultural object detection with You Only Look Once (YOLO) Algorithm: A bibliometric and systematic literature review[J]. Computers and electronics in agriculture, 2024, 223: ID 109090.
|
| [5] |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2016: 770-778.
|
| [6] |
DONG X Y, WANG Q, HUANG Q D, et al. PDDD-PreTrain: A series of commonly used pre-trained models support image-based plant disease diagnosis[J]. Plant phenomics, 2023, 5: ID 0054.
|
| [7] |
LIU Z, MAO H Z, WU C Y, et al. A ConvNet for the 2020s[C]// 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2022: 11966-11976.
|
| [8] |
HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2019: 1314-1324.
|
| [9] |
FERENTINOS K P. Deep learning models for plant disease detection and diagnosis[J]. Computers and electronics in agriculture, 2018, 145: 311-318.
|
| [10] |
于明, 郭志永, 王岩. 基于计算机视觉的植物病害识别方法综述[J]. 科学技术与工程, 2024, 24(12): 4811-4823.
|
|
YU M, GUO Z Y, WANG Y. Review of computer vision-based plant disease identification techniques[J]. Science technology and engineering, 2024, 24(12): 4811-4823.
|
| [11] |
朱锐, 张家瑜, 黄继超, 等. 基于卷积神经网络的农作物叶片病害检测研究进展[J]. 农业工程学报, 2025, 41(17): 15-28.
|
|
ZHU R, ZHANG J Y, HUANG J C, et al. Research progress of crop leaf disease detection based on convolutional neural network[J]. Transactions of the Chinese society of agricultural engineering, 2025, 41(17): 15-28.
|
| [12] |
康继昌, 赵连军. 基于PSA-YOLO11n的小麦害虫检测[J]. 农业大数据学报, 2025, 7(3): 294-306.
|
|
KANG J C, ZHAO L J. Wheat pest detection based on PSA-YOLO11n[J]. Journal of agricultural big data, 2025, 7(3): 294-306.
|
| [13] |
李想, 胡肖楠, 李方一, 等. 苹果树叶多病害及不可辨别病害的轻量识别算法[J]. 农业工程学报, 2023, 39(14): 184-190.
|
|
LI X, HU X N, LI F Y, et al. Lightweight recognition for multiple and indistinguishable diseases of apple tree leaf[J]. Transactions of the Chinese society of agricultural engineering, 2023, 39(14): 184-190.
|
| [14] |
叶进, 吴梦岚, 邱文杰, 等. 基于polyphyletic损失函数的荔枝花检测方法[J]. 农业机械学报, 2023, 54(5): 253-260.
|
|
YE J, WU M L, QIU W J, et al. Litchi flower detection method based on polyphyletic loss function[J]. Transactions of the Chinese society for agricultural machinery, 2023, 54(5): 253-260.
|
| [15] |
邱文杰, 叶进, 胡亮青, 等. 面向植物病害识别的卷积神经网络精简结构Distilled-MobileNet模型[J]. 智慧农业(中英文), 2021, 3(1): 109-117.
|
|
QIU W J, YE J, HU L Q, et al. Distilled-MobileNet model of convolutional neural network simplified structure for plant disease recognition[J]. Smart agriculture, 2021, 3(1): 109-117.
|
| [16] |
张俊, 陈雨艳, 秦震宇, 等. 改进DeepLab v3+模型下的梯田遥感提取研究[J]. 智慧农业(中英文), 2024, 6(3): 46-57.
|
|
ZHANG J, CHEN Y Y, QIN Z Y, et al. Remote sensing extraction method of terraced fields based on improved DeepLab v3+[J]. Smart agriculture, 2024, 6(3): 46-57.
|
| [17] |
HU E J, SHEN Y L, WALLIS P, et al. LoRA: Low-rank adaptation of large language models[EB/OL]. arXiv: 2106.09685, 2021.
|
| [18] |
VALIPOUR M, REZAGHOLIZADEH M, KOBYZEV I, et al. DyLoRA: Parameter-efficient tuning of pre-trained models using dynamic search-free low-rank adaptation[C]// Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics. Stroudsburg, PA, USA: ACL, 2023: 3274-3287.
|
| [19] |
ZHANG Q R, CHEN M S, BUKHARIN A, et al. AdaLoRA: Adaptive budget allocation for parameter-efficient fine-tuning[EB/OL]. arXiv: 2303.10512, 2023.
|
| [20] |
KORNBLITH S, NOROUZI M, LEE H, et al. Similarity of neural network representations revisited[EB/OL]. arXiv: 1905.0041 4, 2019.
|
| [21] |
DAVARI M, HOROI S, NATIK A, et al. Reliability of CKA as a similarity measure in deep learning[EB/OL]. arXiv: 2210.16156, 2022.
|
| [22] |
SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: Inverted residuals and linear bottlenecks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, New Jersey, USA: IEEE, 2018: 4510-4520.
|
| [23] |
RADOSAVOVIC I, KOSARAJU R P, GIRSHICK R, et al. Designing network design spaces[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2020: 10425-10433.
|