[1] |
叶兴庆, 程郁, 张诩 等. 我国重要农产品供需变化趋势与供给保障能力提升策略[J]. 改革, 2024(4): 1-18.
|
|
YE X Q, CHENG Y, ZHANG X, et al. Trends in supply and demand changes of important agricultural products in China and strategies for enhancing supply guarantee capacity[J]. Reform, 2024(4): 1-18.
|
[2] |
鲍洁, 张小允, 许世卫. 我国大豆消费影响因素分析及趋势预测[J]. 江苏农业科学, 2023, 51(8): 240-248.
|
|
BAO J, ZHANG X Y, XU S W. Influence factors analysis and trend forecast of China's soybean consumption[J]. Jiangsu agricultural sciences, 2023, 51(8): 240-248.
|
[3] |
刘秀丽, 相鑫, 秦明慧 等. 中长期粮食需求预测研究综述与展望[J]. 系统科学与数学, 2022, 42(6): 1490-1502.
|
|
LIU X L, XIANG X, QIN M H, et al. A review and prospect on the medium and long-term forecasting of grain demand[J]. Journal of systems science and mathematical sciences, 2022, 42(6): 1490-1502.
|
[4] |
徐雯, 程国强, 张锦华. 大食物观视角下提高我国大豆供给保障能力的政策体系研究: 基于RECS政策模拟的分析[J]. 农业技术经济, 2025(1): 43-63.
|
|
XU W, CHENG G Q, ZHANG J H. Research on the policy system for improving China's soybean supply capacity from the perspective of greater food approach: An analysis based on RECS policy simulation[J]. Journal of agrotechnical economics, 2025(1): 43-63.
|
[5] |
马宏伟, 白荻, 李静 等. 中国大豆2021—2025年消费量和生产量预测分析[J]. 大豆科学, 2022, 41(3): 358-362.
|
|
MA H W, BAI D, LI J, et al. Prediction and analysis of China's soybean consumption and production in 2021—2025[J]. Soybean science, 2022, 41(3): 358-362.
|
[6] |
陈雨生, 周睿, 张婷. 中国饲料粮进口替代研究[J]. 农业技术经济, 2022(7): 64-77.
|
|
CHEN Y S, ZHOU R, ZHANG T. Research on import substitution of feed grain in China[J]. Journal of agrotechnical economics, 2022(7): 64-77.
|
[7] |
汤碧, 李妙晨. 后疫情时代我国大豆进口稳定性及产业发展研究[J]. 农业经济问题, 2022, 43(10): 123-132.
|
|
TANG B, LI M C. China's soybean import stability and industrial development in the post-covid era[J]. Issues in agricultural economy, 2022, 43(10): 123-132.
|
[8] |
GIEDELMANN-L N, GUERRERO W J, SOLANO-CHARRIS E L. On the emergency water distribution problem: Optimizing vehicle routing decisions with deprivation costs considerations[J]. IFAC-PapersOnLine, 2022, 55(10): 3166-3171.
|
[9] |
刘庆, 刘秀丽, 汪寿阳. 基于合理膳食结构的2020—2050年我国食物用粮需求测算[J]. 系统工程理论与实践, 2018, 38(3): 615-622.
|
|
LIU Q, LIU X L, WANG S Y. Estimating China's food grains demand from 2020 to 2050 based on reasonable dietary pattern[J]. Systems engineering-theory & practice, 2018, 38(3): 615-622.
|
[10] |
杨海民, 潘志松, 白玮. 时间序列预测方法综述[J]. 计算机科学, 2019, 46(1): 21-28.
|
|
YANG H M, PAN Z S, BAI W. Review of time series prediction methods[J]. Computer science, 2019, 46(1): 21-28.
|
[11] |
庄家煜, 许世卫, 李杨 等. 基于深度学习的多种农产品供需预测模型[J]. 智慧农业(中英文), 2022, 4(2): 174-182.
|
|
ZHUANG J Y, XU S W, LI Y, et al. Supply and demand forecasting model of multi-agricultural products based on deep learning[J]. Smart agriculture, 2022, 4(2): 174-182.
|
[12] |
李乾川. 基于气象因素的作物单产集成学习预测方法研究与应用[D]. 北京: 中国农业科学院, 2024.
|
|
LI Q C. Research and application of ensemble learning prediction method for crop yield based on meteorological factors. Beijing: Chinese Academy of Agricultural Sciences, 2024.
|
[13] |
LI Q C, XU S W, ZHUANG J Y, et al. Ensemble learning prediction of soybean yields in China based on meteorological data[J]. Journal of integrative agriculture, 2023, 22(6): 1909-1927.
|
[14] |
李乾川, 许世卫, 张永恩, 等. 基于气象因素的玉米单产堆栈集成学习建模与预测[J]. 中国农业科学, 2024, 57(4): 679-697.
|
|
LI Q C, XU S W, ZHANG Y E, et al. Stacking ensemble learning modeling and forecasting of maize yield based on meteorological factors[J]. Scientia agricultura sinica, 2024, 57(4): 679-697.
|
[15] |
VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[EB/OL]. arXiv: 1706.03762, 2017.
|
[16] |
FANTOZZI P, NALDI M. The explainability of transformers: Current status and directions[J]. Computers, 2024, 13(4): ID 92.
|
[17] |
LIM B, ARıK S Ö, LOEFF N, et al. Temporal Fusion Transformers for interpretable multi-horizon time series forecasting[J]. International journal of forecasting, 2021, 37(4): 1748-1764.
|
[18] |
PHETRITTIKUN R, SUVIRAT K, PATTALUNG T N, et al. Temporal Fusion Transformer for forecasting vital sign trajectories in intensive care patients[C]// 2021 13th Biomedical Engineering International Conference (BMEiCON). Piscataway, New Jersey, USA: IEEE, 2021.
|
[19] |
WU B R, WANG L, ZENG Y R. Interpretable tourism demand forecasting with two-stage decomposition and temporal fusion transformers[J]. Journal of systems science and complexity, 2024, 37(6): 2654-2679.
|
[20] |
JOSEPH S, JO A A, DENI RAJ E. Improving time series forecasting accuracy with transformers: A comprehensive analysis with explainability[C]// 2024 Third International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT). Piscataway, New Jersey, USA: IEEE, 2024.
|
[21] |
GUO W X, REN Z M, DU W L, et al. TFT-MPIR: An end-to-end multi-period inventory replenishment strategy based on temporal fusion transformer[J]. Expert systems with applications, 2025, 261: ID 125464.
|
[22] |
韩阳. 基于深度学习的中国宏观经济运行评估[J]. 数量经济技术经济研究, 2023, 40(3): 189-212.
|
|
HAN Y. Evaluation of China's macroeconomic operation based on deep learning[J]. Journal of quantitative & technological economics, 2023, 40(3): 189-212.
|
[23] |
刘宏宇. 基于双注意力机制LSTM的粮食价格预测与解释研究[J]. 粮油食品科技, 2025, 33(1): 272-279.
|
|
LIU H Y. Research on grain price prediction and explanation based on double attention mechanism LSTM[J]. Science and technology of cereals, oils and foods, 2025, 33(1): 272-279.
|
[24] |
LI D, TAN Y, ZHANG Y H, et al. Probabilistic forecasting method for mid-term hourly load time series based on an improved temporal fusion transformer model[J]. International journal of electrical power & energy systems, 2023, 146: ID 108743.
|
[25] |
曾宇容, 吴彬溶, 王林 等. 基于多源异构数据的玉米期货价格可解释性预测[J]. 管理评论, 2023, 35(12): 40-52.
|
|
ZENG Y R, WU B R, WANG L, et al. Interpretable corn futures price forecasting with multivariate heterogeneous data[J]. Management review, 2023, 35(12): 40-52.
|
[26] |
MAZEN F M A, SHAKER Y, ABUL SEOUD R A. Forecasting of solar power using GRU-temporal fusion transformer model and DILATE loss function[J]. Energies, 2023, 16(24): ID 8105.
|
[27] |
QI X H, XU Z Y, WANG F H. Temporal fusion point-interval forecasting: A comprehensive approach for financial time series prediction[J]. Applied soft computing, 2025, 169: ID 112600.
|
[28] |
TAO Q L. Predictive analytics for traffic flow optimization in urban logistics: A transformer-based time series approach[J]. Science progress, 2024, 107(3): 1-30.
|
[29] |
HO R, HUNG K. CEEMD-based multivariate financial time series forecasting using a temporal fusion transformer[C]// 2024 IEEE 14th Symposium on Computer Applications & Industrial Electronics (ISCAIE). Piscataway, New Jersey, USA: IEEE, 2024: 209-215.
|
[30] |
CALDARA D, IACOVIELLO M. Measuring geopolitical risk[J]. American economic review, 2022, 112(4): 1194-1225.
|
[31] |
BAKER S R, BLOOM N, DAVIS S J. Measuring economic policy uncertainty[J]. The quarterly journal of economics, 2016, 131(4): 1593-1636.
|
[32] |
Food and Agriculture Organization of the United Nations. Food Outlook-Biannual Report on Global Food Markets[R]. Food Outlook-Biannual Report on Global Food Markets, 2021. https://doi.org/10.4060/cb7491en.
|
[33] |
TAN H R, ZHAO X G, FU H, et al. A novel fusion positioning navigation system for greenhouse strawberry spraying robot using LiDAR and ultrasonic tags[J]. Agriculture communications, 2025, 3(2): ID 100087.
|
[34] |
NEIK T X, DOLATABADIAN A, DANILEVICZ M F, et al. Plant disease epidemiology in the age of artificial intelligence and machine learning[J]. Agriculture communications, 2025, 3(2): ID 100089.
|