Smart Agriculture ›› 2025, Vol. 7 ›› Issue (4): 174-186.doi: 10.12133/j.smartag.SA202504005
• Information Processing and Decision Making • Previous Articles
XU Wenwen1,2, YU Kejian3, DAI Zexu1,2, WU Yunzhi1,2(
)
Received:2025-04-06
Online:2025-07-30
Foundation items:2024 Anhui Provincial Science and Technology Innovation Plan Project(202423k09020031); Special Fund for Anhui Characteristic Agriculture Industry Technology System(ahtsnycytx-12)
About author:XU Wenwen, E-mail: wenwenxu@stu.ahau.edu.cn
corresponding author:
CLC Number:
XU Wenwen, YU Kejian, DAI Zexu, WU Yunzhi. A Transfer Learning-Based Multimodal Model for Grape Detection and Counting[J]. Smart Agriculture, 2025, 7(4): 174-186.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202504005
Table 3
Results of object detection experiments of different models in grape detection research
| 模型 | mAP/% | mAP50/% | mAP75/% | mAR/% | epochs |
|---|---|---|---|---|---|
| YOLOv3 | 22.0 | 57.0 | 11.3 | 37.3 | 200 |
| DDQ | 27.7 | 45.5 | 28.6 | 66.7 | 70 |
| Grid R-CNN | 32.0 | 63.3 | 28.6 | 48.5 | 70 |
| AutoAssign | 6.50 | 21.2 | 1.50 | 26.2 | 170 |
| PISA | 29.7 | 60.0 | 25.6 | 44.2 | 100 |
| NAS-FPN | 39.8 | 77.6 | 36.2 | 52.8 | 80 |
| Faster R-CNN | 28.0 | 53.4 | 26.4 | 48.4 | 100 |
| Dynamic R-CNN | 23.0 | 48.9 | 19.7 | 40.3 | 80 |
| ATSS | 9.60 | 28.6 | 3.20 | 32.6 | 170 |
| Grounding DINO | 1.50 | 2.90 | 1.60 | 33.1 | — |
| GDCNet | 53.2 | 80.3 | 58.2 | 76.5 | 30 |
Table 4
Results of target detection at different scales in grape detection research
| 模型 | mAP_s | mAP_m | mAP_l | mAR_s | mAR_m | mAR_l |
|---|---|---|---|---|---|---|
| YOLOv3 | 35.7 | 15.6 | 18.3 | 35.6 | 27.0 | 41.8 |
| DDQ | 64.7 | 15.9 | 24.9 | 64.9 | 57.7 | 71.7 |
| Grid R-CNN | 47.0 | 26.6 | 28.8 | 46.9 | 36.2 | 54.6 |
| AutoAssign | 28.4 | 2.4 | 4.4 | 28.3 | 8.0 | 29.0 |
| PISA | 44.3 | 16.8 | 27.1 | 44.3 | 26.8 | 48.7 |
| NAS-FPN | 51.7 | 31.2 | 36.7 | 51.8 | 43.7 | 57.3 |
| Faster R-CNN | 47.0 | 21.7 | 24.6 | 46.9 | 36.5 | 54.7 |
| Dynamic R-CNN | 39.2 | 14.8 | 19.6 | 39.2 | 23.9 | 45.5 |
| ATSS | 34.2 | 7.4 | 6.2 | 34.0 | 16.6 | 35.1 |
| Grounding DINO | 36.2 | 5.60 | 0.90 | 36.0 | 12.9 | 34.6 |
| GDCNet | 74.2 | 45.9 | 43.8 | 74.7 | 75.4 | 83.5 |
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
张传栋, 高鹏, 亓璐, 等. 基于SAW-YOLO v8n的葡萄幼果轻量化检测方法[J]. 农业机械学报, 2024, 55(10): 286-294.
|
|
|
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
刘畅, 孙雨, 杨晶, 等. 基于3C-YOLOv8n和深度相机的葡萄识别与定位方法[J]. 智慧农业(中英文), 2024, 6(6): 121-131.
|
|
|
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
| [39] |
|
| [40] |
|
| [41] |
|
| [42] |
|
| [43] |
|
| [44] |
|
| [45] |
|
| [46] |
|
| [1] | BAI Juekun, CHEN Huaimeng, DONG Daming, LIU Yachao, YUE Xiaolong, DU Xiuke. Spectral Technology in Vegetable Production Detection: Research Progress, Challenges and Suggestions [J]. Smart Agriculture, 2025, 7(4): 1-17. |
| [2] | LIU Jie, ZHAO Kang, ZHAO Qinjun, SONG Ye. Acoustic-Vibration Detection Method for The Apple Moldy Core Disease Based on D-S Evidence Theory [J]. Smart Agriculture, 2025, 7(4): 119-131. |
| [3] | CHANG Jian, WANG Bingbing, YIN Long, LI Yanqing, LI Zhaoxin, LI Zhuang. The Lightweight Bee Pollination Recognition Model Based On YOLOv10n-CHL [J]. Smart Agriculture, 2025, 7(3): 185-198. |
| [4] | HU Lingyan, GUO Ruiya, GUO Zhanjun, XU Guohui, GAI Rongli, WANG Zumin, ZHANG Yumeng, JU Bowen, NIE Xiaoyu. U-Net Greenhouse Sweet Cherry Image Segmentation Method Integrating PDE Plant Temporal Image Contrastive Learning and GCN Skip Connections [J]. Smart Agriculture, 2025, 7(3): 131-142. |
| [5] | ZHANG Le, LI Aixue, CHEN Liping. Electrochemical Sensors for Plant Active Small Molecule Detection: A review [J]. Smart Agriculture, 2025, 7(3): 69-88. |
| [6] | XIE Jiyuan, ZHANG Dongyan, NIU Zhen, CHENG Tao, YUAN Feng, LIU Yaling. Accurate Detection of Tree Planting Locations in Inner Mongolia for The Three North Project Based on YOLOv10-MHSA [J]. Smart Agriculture, 2025, 7(3): 108-119. |
| [7] | LI Zusheng, TANG Jishen, KUANG Yingchun. A Lightweight Model for Detecting Small Targets of Litchi Pests Based on Improved YOLOv10n [J]. Smart Agriculture, 2025, 7(2): 146-159. |
| [8] | NIU Ziang, QIU Zhengjun. Extraction Method of Maize Plant Skeleton and Phenotypic Parameters Based on Improved YOLOv11-Pose [J]. Smart Agriculture, 2025, 7(2): 95-105. |
| [9] | YANG Chenxue, LI Xian, ZHOU Qingbo. Knowledge Graph Driven Grain Big Data Applications: Overview and Perspective [J]. Smart Agriculture, 2025, 7(2): 26-40. |
| [10] | WU Liuai, XU Xueke. Lightweight Tomato Leaf Disease and Pest Detection Method Based on Improved YOLOv10n [J]. Smart Agriculture, 2025, 7(1): 146-155. |
| [11] | YANG Xinting, HU Huan, CHEN Xiao, LI Wenzheng, ZHOU Zijie, LI Wenyong. Lightweight Detection and Recognition Model for Small Target Pests on Sticky Traps in Multi-Source Scenarios [J]. Smart Agriculture, 2025, 7(1): 111-123. |
| [12] | JIN Ning, GUO Yufeng, HAN Xiaodong, MIAO Yisheng, WU Huarui. Method for Calculating Semantic Similarity of Short Agricultural Texts Based on Transfer Learning [J]. Smart Agriculture, 2025, 7(1): 33-43. |
| [13] | WU Huarui, ZHAO Chunjiang, LI Jingchen. Agri-QA Net: Multimodal Fusion Large Language Model Architecture for Crop Knowledge Question-Answering System [J]. Smart Agriculture, 2025, 7(1): 1-10. |
| [14] | YAN Congkuan, ZHU Dequan, MENG Fankai, YANG Yuqing, TANG Qixing, ZHANG Aifang, LIAO Juan. Rice Leaf Disease Image Enhancement Based on Improved CycleGAN [J]. Smart Agriculture, 2024, 6(6): 96-108. |
| [15] | LI Hongbo, TIAN Xin, RUAN Zhiwen, LIU Shaowen, REN Weiqi, SU Zhongbin, GAO Rui, KONG Qingming. Seedling Stage Corn Line Detection Method Based on Improved YOLOv8 [J]. Smart Agriculture, 2024, 6(6): 72-84. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||