LI Aoqiang1,2,3, DAI Hangyu1,2,3, GUO Ya1,2,3()
Received:
2025-05-19
Online:
2025-07-23
Foundation items:
International Cooperation and Exchange Program of the National Natural Science Foundation of China(51961125102); Jiangsu Provincial Modern Agriculture - Key and General Programs(BE2022366)
About author:
Li Aoqiang, E-mail: liaoqiang919@gmail.com
corresponding author:
CLC Number:
LI Aoqiang, DAI Hangyu, GUO Ya. An Underwater Insitu Quality Estimation Method for Chinese Mitten Crab Based on Binocular Vision and Improved YOLOv11-pose[J]. Smart Agriculture, doi: 10.12133/j.smartag.SA202505019.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202505019
Table 1
Comparison of ablation experiment results for keypoint detection of Chinese mitten crab using the improved YOLOv11 model
序号 | EMBC | SDFM | GFLOPS | BOX | Pose | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
P/% | R/% | mAP50/% | F 1/% | P/% | R/% | mAP50/% | F 1/% | ||||
1 | × | × | 6.6 | 85.3 | 84.7 | 92.8 | 85.0 | 85.8 | 85.1 | 93.1 | 85.4 |
2 | × | √ | 9.7 | 90.2 | 91.2 | 95.7 | 90.7 | 89.9 | 90.8 | 95.8 | 90.3 |
3 | √ | × | 6.4 | 89.8 | 93.2 | 95.1 | 91.5 | 89.1 | 92.3 | 94.4 | 90.7 |
4 | √ | √ | 9.5 | 91.7 | 94.7 | 97.2 | 93.2 | 91.3 | 94.4 | 96.7 | 92.8 |
Table 2
Comparison of results from different models in Chinese mitten crab keypoint detection experiments
模型 | GFLOPS | BOX | Pose | ||||||
---|---|---|---|---|---|---|---|---|---|
P/% | R/% | mAP50/% | F 1/% | P/% | R/% | mAP50/% | F 1/% | ||
YOLOv5 | 7.3 | 83.2 | 87.5 | 92.4 | 85.3 | 88.3 | 82.2 | 92.3 | 85.1 |
YOLOv8n | 8.3 | 89.3 | 85.4 | 93.7 | 87.3 | 89.3 | 85.4 | 93.7 | 87.3 |
YOLOv10n | 8.0 | 81.4 | 83.4 | 86.0 | 82.4 | 81.4 | 83.4 | 86.2 | 82.4 |
YOLO11n | 6.6 | 85.3 | 84.7 | 92.8 | 85.0 | 85.8 | 85.1 | 93.1 | 85.4 |
YOLOv12n | 6.6 | 79.4 | 86.0 | 88.7 | 82.6 | 80.7 | 86.5 | 89.1 | 83.5 |
YOLOv8-ES | 9.7 | 90.6 | 87.7 | 95.4 | 89.1 | 90.3 | 87.3 | 94.9 | 88.8 |
YOLOv11-ES | 9.5 | 91.7 | 94.7 | 97.2 | 93.2 | 91.3 | 94.4 | 96.7 | 92.8 |
[1] |
段延娥, 李道亮, 李振波, 等. 基于计算机视觉的水产动物视觉特征测量研究综述[J]. 农业工程学报, 2015, 31(15): 1-11.
|
|
|
[2] |
|
[3] |
|
[4] |
张铮, 鲁祥, 胡庆松. 基于图像增强与GC-YOLO v5s的水下环境河蟹识别轻量化模型研究[J]. 农业机械学报, 2024, 55(11): 124-131, 374.
|
|
|
[5] |
|
[6] |
|
[7] |
唐永成, 彭姣, 赵运林, 等. 池养中华绒螯蟹不同性别形态及质量差异分析[J]. 渔业科学进展, 2019, 40(6): 114-120.
|
|
|
[8] |
和飞, 王志忠, 卢红, 等. 黄河口中华绒螯蟹成蟹形态性状与体质量的相关性及通径分析[J]. 水产学杂志, 2024, 37(3): 31-36.
|
|
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
董鹏, 周烽, 赵悰悰, 等. 基于双目视觉的水下海参尺寸自动测量方法[J]. 计算机工程与应用, 2021, 57(8): 271-278.
|
|
|
[17] |
|
[18] |
汤忠强, 周波, 戴先中, 等. 基于改进DCP算法的水下机器人视觉增强[J]. 机器人, 2018, 40(2): 222-230.
|
|
|
[19] |
王新伟, 孙亮, 雷平顺, 等. 用于海洋宏生物原位观测的水下激光雷达相机[J]. 红外与激光工程, 2021, 50(6): 37-45.
|
|
|
[20] |
|
[21] |
崔海朋, 秦朝旭, 马志宇. 基于深度学习的鱼类特征点检测与体征识别方法[J]. 中国农机化学报, 2024, 45(6): 201-207.
|
|
|
[22] |
|
[23] |
|
[24] |
|
[25] |
牛子昂, 裘正军. 基于改进YOLOv11-Pose的玉米植株骨架及表型参数提取方法[J]. 智慧农业(中英文), 2025, 7(2): 95-105.
|
|
|
[26] |
|
[27] |
陶洋, 钟邦乾, 赵文博, 等. 融合显示视觉中心与注意力机制的水下目标检测算法[J]. 激光与光电子学进展, 2024, 61(12): 441-450.
|
|
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
WOO S,
|
[1] | HAN Yu, QI Kangkang, ZHENG Jiye, LI Jinai, JIANG Fugui, ZHANG Xianglun, YOU Wei, ZHANG Xia. Lightweight Cattle Facial Recognition Method Based on Improved YOLOv11 [J]. Smart Agriculture, 2025, 7(3): 173-184. |
[2] | NIU Ziang, QIU Zhengjun. Extraction Method of Maize Plant Skeleton and Phenotypic Parameters Based on Improved YOLOv11-Pose [J]. Smart Agriculture, 2025, 7(2): 95-105. |
[3] | ZHOU Xiushan, WEN Luting, JIE Baifei, ZHENG Haifeng, WU Qiqi, LI Kene, LIANG Junneng, LI Yijian, WEN Jiayan, JIANG Linyuan. Real-time Detection Algorithm of Expanded Feed Image on the Water Surface Based on Improved YOLOv11 [J]. Smart Agriculture, 2024, 6(6): 155-167. |
[4] | ZUO Haoxuan, HUANG Qicheng, YANG Jiahao, MENG Fanjia, LI Sien, LI Li. In Situ Identification Method of Maize Stalk Width Based on Binocular Vision and Improved YOLOv8 [J]. Smart Agriculture, 2023, 5(3): 86-95. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||