[1] |
ABASI S, MINAEI S, JAMSHIDI B, et al. Dedicated non-destructive devices for food quality measurement: A review[J]. Trends in food science & technology, 2018, 78: 197-205.
|
[2] |
WANG Y, FENG Y H, ZHANG B C, et al. Machine learning-supported sensor array for multiplexed foodborne pathogenic bacteria detection and identification[J]. Trends in food science & technology, 2024, 154: ID 104787.
|
[3] |
XIE W J, WEI S, ZHENG Z H, et al. A CNN-based lightweight ensemble model for detecting defective carrots[J]. Biosystems engineering, 2021, 208: 287-299.
|
[4] |
LI Y, GUO L Z, YANG H N, et al. Multiscale bioimpedance detection methods and modeling for dynamic non-destructive monitoring of agricultural product quality[J]. Trends in food science & technology, 2025, 157: ID 104888.
|
[5] |
XIE W J, ZHAO M C, LIU Y, et al. Recent advances in transformer technology for agriculture: A comprehensive survey[J]. Engineering applications of artificial intelligence, 2024, 138: ID 109412.
|
[6] |
ZAUKUU J L, ATTIPOE N Q, KORNEH P B, et al. Detection of bissap calyces and bissap juices adulteration with sorghum leaves using NIR spectroscopy and VIS/NIR spectroscopy[J]. Journal of food composition and analysis, 2025, 141: ID 107358.
|
[7] |
刘燕德, 刘良峰, 李雄, 等. 基于高光谱成像结合波段比和改进分水岭分割算法的草莓早期损伤检测[J]. 中国农业大学学报, 2024, 29(11): 50-62.
|
|
LIU Y D, LIU L F, LI X, et al. Detection of early damage on strawberries using hyperspectral reflectance imaging combined with band ratio and improved watershed segmentation algorithm[J]. Journal of China agricultural university, 2024, 29(11): 50-62.
|
[8] |
王偲琦, 黄琳琳, 臧秀, 等. 低场核磁共振无损检测技术在水产品加工贮藏方面的应用[J]. 食品安全质量检测学报, 2018, 9(8): 1725-1729.
|
|
WANG S Q, HUANG L L, ZANG X, et al. Application of low field nuclear magnetic technology in aquatic products processing and storage[J]. Journal of food safety & quality, 2018, 9(8): 1725-1729.
|
[9] |
胡军, 吕豪豪, 乔鹏, 等. 基于太赫兹成像检测技术与特征提取方法结合巴旦木饱满度检测方法研究[J]. 光谱学与光谱分析, 2024, 44(7): 1896-1904.
|
|
HU J, LYU H H, QIAO P, et al. Research on almond plumpness detection method based on terahertz imaging technology and feature extraction method[J]. Spectroscopy and spectral analysis, 2024, 44(7): 1896-1904.
|
[10] |
徐振, 刘燕德, 胡军, 等. 基于太赫兹时域光谱技术的掺假川贝母检测[J]. 农业工程学报, 2021, 37(15): 308-314.
|
|
XU Z, LIU Y D, HU J, et al. Detection of adulterated fritillariae using terahertz time domain spectroscopy[J]. Transactions of the Chinese society of agricultural engineering, 2021, 37(15): 308-314.
|
[11] |
WANG D C, FENG Z, JI S Y, et al. Simultaneous prediction of peach firmness and weight using vibration spectra combined with one-dimensional convolutional neural network[J]. Computers and electronics in agriculture, 2022, 201: ID 107341.
|
[12] |
SUN Y C, YU G, LU Q, et al. An electronic nose device with rapid and universal odor detection capability[J]. Sensors and actuators B: chemical, 2025, 440: ID 137871.
|
[13] |
LI Z G, LIU J X, SI G S, et al. Design of a high-sensitivity differential Helmholtz photoacoustic cell and its application in methane detection[J]. Optics express, 2022, 30(16): 28984-28996.
|
[14] |
CAO Y, LIU K, WANG R F, et al. Three-wavelength measurement of aerosol absorption using a multi-resonator coupled photoacoustic spectrometer[J]. Optics express, 2021, 29(2): 2258-2269.
|
[15] |
ROSENCWAIG A. Photoacoustic spectroscopy of biological materials[J]. Science, 1973, 181(4100): 657-658.
|
[16] |
ROSENCWAIG A. Photoacoustic spectroscopy. New tool for investigation of solids[J]. Analytical chemistry, 1975, 47(6): 592-604.
|
[17] |
ROSENCWAIG A, GERSHO A. Theory of the photoacoustic effect with solids[J]. Journal of applied physics, 1976, 47(1): 64-69.
|
[18] |
SUBBARAYA B H, LAL S. Rocket measurements of ozone concentrations in the stratosphere and mesosphere over Thumba[J]. Proceedings of the Indian academy of sciences - earth and planetary sciences, 1981, 90(2): 173-187.
|
[19] |
KEERATIRAWEE K, HAUSER P C. Photoacoustic detection of ozone with a red laser diode[J]. Talanta, 2021, 223: ID 121890.
|
[20] |
SUN B, WEI T T, ZHANG M J, et al. Optical synchronous signal demodulation-based quartz-enhanced photoacoustic spectroscopy for remote, multi-point methane detection in complex environments[J]. Photoacoustics, 2025, 43: ID 100708.
|
[21] |
VIRENDRA N, SURYA N. Chapter 2 - Physics and instrumentation of photothermal and photoacoustic spectroscopy of solids[M]. Amsterdam: Photoacoustic and Photothermal Spectroscopy, Elsevier, 2023: 21-49.
|
[22] |
ZHAO Y, WANG S Q, MERRILL J A, et al. Triplex radiometric, photoacoustic, and ultrasonic imaging based on single-pulse excitation[J]. Optics letters, 2020, 45(7): 1703-1706.
|
[23] |
HOSSEINAEE Z, LE M, BELL K, et al. Towards non-contact photoacoustic imaging [review[J]. Photoacoustics, 2020, 20: ID 100207.
|
[24] |
DU J Y, YANG S S, QIAO Y C, et al. Recent progress in near-infrared photoacoustic imaging[J]. Biosensors and bioelectronics, 2021, 191: ID 113478.
|
[25] |
SAMPAOLO A, PATIMISCO P, GIGLIO M, et al. Quartz-enhanced photoacoustic spectroscopy for multi-gas detection: A review[J]. Analytica chimica acta, 2022, 1202: ID 338894.
|
[26] |
张凤, 俞旭君, 董良, 等. 多光谱光声层析成像技术在精索静脉曲张大鼠睾丸成像中的初步探索[J]. 重庆医科大学学报, 2023, 48(10): 1166-1172.
|
|
ZHANG F, YU X J, DONG L, et al. Initial exploration of multispectral optoacoustic tomography in imaging of the testes in varicocele rats[J]. Journal of Chongqing medical university, 2023, 48(10): 1166-1172.
|
[27] |
NIKOLIĆ P M, TODOROVIĆ D M. Photoacoustic and electroacoustic properties of semiconductors[J]. Progress in quantum electronics, 1989, 13(2): 107-189.
|
[28] |
ZHA S L, CHEN H, LIU C, et al. Multivariate-coupled-enhanced photoacoustic spectroscopy with Chebyshev rational fractional-order filtering algorithm for trace CH4 detection[J]. Photoacoustics, 2025, 42: ID 100692.
|
[29] |
LAI E P C, WONG B, VANDERNOOT V A. Preservation of solid mercuric dithizonate samples with polyvinyl chloride for determination of mercury(II) in environmental waters by photochromism-induced photoacoustic spectrometry[J]. Talanta, 1993, 40(7): 1097-1105.
|
[30] |
HIRSCHMANN C B, SINISALO S, UOTILA J, et al. Trace gas detection of benzene, toluene, p-, m- and o-xylene with a compact measurement system using cantilever enhanced photoacoustic spectroscopy and optical parametric oscillator[J]. Vibrational spectroscopy, 2013, 68: 170-176.
|
[31] |
NAVAS M J, JIMÉNEZ A M, ASUERO A G. Human biomarkers in breath by photoacoustic spectroscopy[J]. Clinica chimica acta, 2012, 413(15/16): 1171-1178.
|
[32] |
THAKUR S, RAI V, SINGH J. Chapter 3-Physics and techniques of photoacoustic spectroscopy of liquids[M]. Amsterdam: Photoacoustic and Photothermal Spectroscopy, Elsevier, 2023, 51-68.
|
[33] |
张硕. 基于压电技术的固体光声光谱检测[D]. 兰州: 西北师范大学, 2011.
|
|
ZHANG S. Solid photoacoustic spectrum detection based on piezoelectric technique[D]. Lanzhou: Northwest Normal University, 2011.
|
[34] |
LYU G Q, DU C W, MA F, et al. In situ detection of rice leaf cuticle responses to nitrogen supplies by depth-profiling Fourier transform photoacoustic spectroscopy[J]. Spectrochimica acta part A, molecular and biomolecular spectroscopy, 2020, 228: ID 117759.
|
[35] |
LIU L Y, WANG Z S, LI J, et al. A non-invasive analysis of seed vigor by infrared thermography[J]. Plants, 2020, 9(6): ID 768.
|
[36] |
卢伟, 张孜谞, 蔡苗苗, 等. 基于光声光谱和TCA迁移学习的稻种活力检测[J]. 农业工程学报, 2020, 36(22): 341-348.
|
|
LU W, ZHANG Z X, CAI M M, et al. Detection of rice seeds vigor based on photoacoustic spectrum combined with TCA transfer learning[J]. Transactions of the Chinese society of agricultural engineering, 2020, 36(22): 341-348.
|
[37] |
李欢欢, 卢伟, 杜昌文, 等. 基于光声光谱结合LS-SVR的稻种活力快速无损检测方法研究[J]. 中国激光, 2015, 42(11): 280-289.
|
|
LI H H, LU W, DU C W, et al. Study on rapid and non-destructive detection of rice seed vigor based on photoacoustic spectroscopy combined with LS-SVR[J]. Chinese journal of lasers, 2015, 42(11): 280-289.
|
[38] |
王新宇, 牛鹏帅, 卢伟, 等. 基于光声光谱深度扫描的单粒玉米种子发芽率无损检测方法[J]. 华南农业大学学报, 2020, 41(6): 119-125.
|
|
WANG X Y, NIU P S, LU W, et al. A nondestructive detection method for single maize seed germination rate based on photoacoustic spectrum deep scanning[J]. Journal of South China agricultural university, 2020, 41(6): 119-125.
|
[39] |
郭振宇, 樊亚杉, 翟保杰, 等. 光声光谱二氧化碳传感的种子活力检测[J]. 光学 精密工程, 2025, 33(3): 367-376.
|
|
GUO Z Y, FAN Y S, ZHAI B J, et al. Detection of seed viability by photoacoustic carbon dioxide sensing[J]. Optics and precision engineering, 2025, 33(3): 367-376.
|
[40] |
POPA C, PETRUS M. Heavy metals impact at plants using photoacoustic spectroscopy technology with tunable CO2 laser in the quantification of gaseous molecules[J]. Microchemical journal, 2017, 134: 390-399.
|
[41] |
HUANG Z C, SAITO Y, GAO T Q, et al. A review of fluorescence imaging system supported by excitation-emission matrix for fruit and vegetable quality estimation[J]. Food control, 2025, 169: ID 111040.
|
[42] |
BERGEVIN M, N'SOUKPOÉ-KOSSI C, CHARLEBOIS D, et al. Assessment of strawberry maturity by photoacoustic spectroscopy[J]. Applied spectroscopy, 1995, 49(3): 397-399.
|
[43] |
POPA C, DUMITRAS D C, PATACHIA M, et al. Testing fruit quality by photoacoustic spectroscopy assay[J]. Laser physics, 2014, 24(10): ID 105702.
|
[44] |
ROJAS-MARROQUIN A, LUVIANO L, HERNÁNDEZ-WONG J, et al. Application of photoacoustic spectroscopy and phase-resolved technique to the study of photoprotective pigments in golden delicious apple (Malus domestica)[J]. International journal of thermophysics, 2020, 41(3): ID 32.
|
[45] |
LIMA R J S, VASCONCELOS A S, SUASSUNA J F. Carotenoids and flavonoids identification in Brazilian tropical fruits and vegetables using photoacoustic technique[J]. Journal de physique, 2005, 125: 51-53.
|
[46] |
LOURENÇO NETO M, AGRA K L, SUASSUNA FILHO J, et al. TDDFT calculations and photoacoustic spectroscopy experiments used to identify phenolic acid functional biomolecules in Brazilian tropical fruits in natura[J]. Spectrochimica acta part A: Molecular and biomolecular spectroscopy, 2018, 193: 249-257.
|
[47] |
BARRIENTOS-SOTELO V R, CANO-CASAS R, CRUZ-OREA A, et al. Photoacoustic characterization of green, red and dehydrated Capsicum annuum L. variety pasilla[J]. Food biophysics, 2015, 10(4): 481-486.
|
[48] |
ZENDEJAS-LEAL B E, BARRIENTOS-SOTELO V R, CANO-CASAS R, et al. Photoacoustic monitoring of absorption spectrum during the dehydration process of pasilla chili pepper[J]. International journal of thermophysics, 2018, 39(7): ID 80.
|
[49] |
HERNAACUTE NDEZ A C, DOMIACUTE NGUEZ PACHECO F A, CRUZ OREA A, et al. Optical absorption coefficient of different tortillas by photoacoustic spectroscopy[J]. African journal of biotechnology, 2012, 11(92): 15916-15922.
|
[50] |
DÓKA O, BICANIC D D, DICKO M H, et al. Photoacoustic approach to direct determination of the total phenolic content in red sorghum flours[J]. Journal of agricultural and food chemistry, 2004, 52(8): 2133-2136.
|
[51] |
GORDON S H, SCHUDY R B, WHEELER B C, et al. Identification of Fourier transform infrared photoacoustic spectral features for detection of Aspergillus flavus infection in corn[J]. International journal of food microbiology, 1997, 35(2): 179-186.
|
[52] |
LIU Q, ZHANG W, ZHANG B, et al. Determination of total protein and wet gluten in wheat flour by Fourier transform infrared photoacoustic spectroscopy with multivariate analysis[J]. Journal of food composition and analysis, 2022, 106: ID 104349 .
|
[53] |
HERNANDEZ-AGUILAR C, CRUZ-OREA A, IVANOV R, et al. The optical absorption coefficient of maize seeds investigated by photoacoustic spectroscopy[J]. Food biophysics, 2011, 6(4): 481-486.
|
[54] |
GUPTA V, KUMAR A, GARG G K, et al. Photoacoustic spectroscopy for identification and differential diagnosis of T. INDICA with other seed-borne pathogens of wheat and rice[J]. Instrumentation science & technology, 2001, 29(4): 283-293.
|
[55] |
MOLINA R R, AGUILAR C H, PACHECO A D, et al. Alternative method to characterize corn grain by means of photoacoustic spectroscopy[J]. International journal of thermophysics, 2013, 34(8): 1540-1548.
|
[56] |
RODRÍGUEZ-PÁEZ C L, CARBALLO-CARBALLO A, RICO-MOLINA R, et al. The optical absorption coefficient of maize grains investigated by photoacoustic spectroscopy[J]. International journal of thermophysics, 2016, 38(1): ID 11.
|
[57] |
SANCHEZ-HERNANDEZ G, HERNANDEZ-AGUILAR C, DOMINGUEZ-PACHECO A, et al. The optical absorption coefficient of bean seeds investigated using photoacoustic spectroscopy[J]. International journal of thermophysics, 2015, 36(5): 835-843.
|
[58] |
DOMÍNGUEZ-PACHECO A, HERNÁNDEZ-AGUILAR C, CRUZ-OREA A. Photoacoustic determination of non-radiative relaxation time of absorbing centers in maize seeds[J]. International journal of thermophysics, 2017, 38(7): ID 111.
|
[59] |
PÉREZ REYES M C, HERNANDEZ-AGUILAR C, DOMINGUEZ-PACHECO A, et al. The optical absorption coefficient of barley seeds investigated by photoacoustic spectroscopy and their effects by laser biostimulation[J]. International journal of thermophysics, 2015, 36(9): 2389-2400.
|
[60] |
RICO MOLINA R, HERNÁNDEZ AGUILAR C, DOMINGUEZ PACHECO A, et al. Characterization of maize grains with different pigmentation investigated by photoacoustic spectroscopy[J]. International journal of thermophysics, 2014, 35(9): 1933-1939.
|
[61] |
HERNANDEZ-AGUILAR C, DOMINGUEZ-PACHECO A, CRUZ-OREA A, et al. Depth profiles in maize (Zea mays L.) seeds studied by photoacoustic spectroscopy[J]. International journal of thermophysics, 2015, 36: 891-899.
|
[62] |
HERNÁNDEZ AGUILAR C, CARBALLO A C, CRUZ-OREA A, et al. The carotenoid content in seedlings of maize seeds irradiated by a 650 nm diode laser: Qualitative photoacoustic study[J]. The European physical journal special topics, 2008, 153(1): 515-518.
|
[63] |
HERNÁNDEZ AGUILAR C, MEZZALAMA M, LOZANO N, et al. Optical absorption coefficient of laser irradiated wheat seeds determined by photoacoustic spectroscopy[J]. The European physical journal special topics, 2008, 153(1): 519-522.
|
[64] |
HERNÁNDEZ AGUILAR C, DOM\'\INGUEZ PACHECO F A, CRUZ OREA A, et al. Thermal effects of laser irradiation on maize seeds[J]. International agrophysics, 2015, 29(2): 147-156.
|
[65] |
PACHECO A D, AGUILAR C H, OREA A C, et al. Evaluation of wheat and maize seeds by photoacoustic microscopy[J]. International journal of thermophysics, 2009, 30(6): 2036-2043.
|
[66] |
ROJAS-LIMA J E, DOMÍNGUEZ-PACHECO F A, HERNÁNDEZ-AGUILAR C, et al. Kolmogorov–Smirnov test for statistical characterization of photopyroelectric signals obtained from maize seeds[J]. International journal of thermophysics, 2018, 40(1): ID 4.
|
[67] |
MEDINA-PEREZ A, DOMINGUEZ-PACHECO A, HERNANDEZ-AGUILAR C, et al. Thermal imaging using photoacoustic microscopy with different excitation wavelengths[J]. International journal of thermophysics, 2019, 40(2): ID 23.
|
[68] |
SANTOS J G, SILVEIRA L B, OLENKA L, et al. Photoacoustic investigation of copaiba oil[J]. The European physical journal special topics, 2008, 153(1): 523-526.
|
[69] |
LU Y Z, DU C W, YU C B, et al. Determination of nitrogen in rapeseed by Fourier transform infrared photoacoustic spectroscopy and independent component analysis[J]. Analytical letters, 2015, 48(7): 1150-1162.
|
[70] |
LUO H, YANG K Y, JI L L, et al. Photoacoustic spectroscopy combined with integrated learning to identify soybean oil with different frying durations[J]. Sensors, 2023, 23(9): ID 4247.
|
[71] |
BICANIC D, SWARTS J, LUTEROTTI S, et al. Optothermistor as a breakthrough in the quantification of lycopene content of thermally processed tomato-based foods: Verification versus absorption spectrophotometry and high-performance liquid chromatography[J]. Journal of agricultural and food chemistry, 2005, 53(9): 3295-3299.
|
[72] |
DÖKA O, BICANIC D, SZÖLLÖSY L. Rapid and gross screening for Pb3O4 adulterant in ground sweet red paprika by means of photoacoustic spectroscopy[J]. Instrumentation science & technology, 1998, 26(2/3): 203-208.
|
[73] |
LIU L X, WANG Y F, GAO C M, et al. Photoacoustic spectroscopy as a non-destructive tool for quantification of pesticide residue in apple cuticle[J]. International journal of thermophysics, 2015, 36(5): 868-872.
|
[74] |
FIORANI L, ARTUSO F, GIARDINA I, et al. Photoacoustic laser system for food fraud detection[J]. Sensors, 2021, 21(12): ID 4178.
|
[75] |
OLIVEIRA V, CAETANO I, MACHADO C, et al. Photoacoustic spectroscopy and multivariate techniques: New applications to simplify the analysis of raw propolis[J]. Microchemical journal, 2023, 194: ID 109309.
|
[76] |
SAMMARCO G, ALINOVI M, FIORANI L, et al. Oregano herb adulteration detection through rapid spectroscopic approaches: Fourier transform-near infrared and laser photoacoustic spectroscopy facilities[J]. Journal of food composition and analysis, 2023, 124: ID 105672.
|
[77] |
HERNANDEZ-AGUILAR C, DOMINGUEZ-PACHECO A, VALDERRAMA-BRAVO C, et al. Photoacoustic characterization of wheat bread mixed with Moringa oleifera [J]. Current research in food science, 2021, 4: 521-531.
|
[78] |
DIAS R, VALDERRAMA P, MARÇO P, et al. Infrared-photoacoustic spectroscopy and multiproduct multivariate calibration to estimate the proportion of coffee defects in roasted samples[J]. Beverages, 2023, 9(1): ID 21.
|
[79] |
SHARIFI F, MOJTABA N, GHASEMI M., et al. Finite element simulation and development of a LED-based photoacoustic spectroscopy system for quality assessment of some food liquids [J]. Innovative food technologies, 2022, 9(4): 383-405.
|
[80] |
SHARIFI F, NADERI-BOLDAJI M, GHASEMI-VARNAMKHASTI M, et al. Feasibility study of detecting some milk adulterations using a LED-based Vis-SWNIR photoacoustic spectroscopy system[J]. Food chemistry, 2023, 424: ID 136411.
|
[81] |
KHOSROSHAHI M E, PATEL Y, WOLL-MORISON V. Non-destructive assessment of milk quality using pulsed UV photoacoustic, fluorescence and near FTIR spectroscopy[J]. Laser physics letters, 2022, 19(7): ID 075602.
|
[82] |
XU R, ADIL M Z, JABEEN S, et al. Recent advancements in chemometrics based non-destructive analytical techniques for rapid detection of adulterants in milk and dairy products-A review[J]. Food control, 2025, 174: ID 111247.
|
[83] |
PATIMISCO P, SAMPAOLO A, DONG L, et al. Recent advances in quartz enhanced photoacoustic sensing[J]. Applied physics reviews, 2018, 5(1): ID 011106.
|
[84] |
YANG X, CHEN B S, LIANG Y Z, et al. A review of laser-spectroscopy-based gas sensing techniques for trace formaldehyde detection[J]. Measurement, 2025, 253: ID 117656.
|
[85] |
ZHANG C, QIAO S D, HE Y, et al. Multi-resonator T-type photoacoustic cell based photoacoustic spectroscopy gas sensor for simultaneous measurement C2H2, CH4 and CO2 [J]. Sensors and actuators B: chemical, 2025, 427: ID 137168.
|
[86] |
MOTA L, RODRIGUES G, MIKLÓS A, et al. Enhanced selectivity and sensitivity of the first harmonic detection in a compact differential photoacoustic cell for sensing ammonia at trace levels[J]. Measurement, 2025, 244: ID 116464.
|
[87] |
FATIMA A, KRATKIEWICZ K, MANWAR R, et al. Review of cost reduction methods in photoacoustic computed tomography[J]. Photoacoustics, 2019, 15: ID 100137.
|