| [1] |
赵春江. 智慧农业发展现状及战略目标研究[J]. 智慧农业, 2019, 1(1): 1-7.
|
|
ZHAO C J. State-of-the-art and recommended developmental strategic objectivs of smart agriculture[J]. Smart agriculture, 2019, 1(1): 1-7.
|
| [2] |
ARAI T, PAGELLO E, PARKER L E. Guest editorial advances in multirobot systems[J]. IEEE transactions on robotics and automation, 2002, 18(5): 655-661.
|
| [3] |
赵瑞雪, 杨晨雪, 郑建华, 等. 农业智能知识服务研究现状及展望[J]. 智慧农业(中英文), 2022, 4(4): 105-125.
|
|
ZHAO R X, YANG C X, ZHENG J H, et al. Agricultural intelligent knowledge service: Overview and future perspectives[J]. Smart agriculture, 2022, 4(4): 105-125.
|
| [4] |
尹彦鑫, 孟志军, 赵春江, 等. 大田无人农场关键技术研究现状与展望[J]. 智慧农业(中英文), 2022(4): 1-25.
|
|
YIN Y X, MENG Z J, ZHAO C J, et al. State-of-the-art and prospect of research on key technical for unmanned farms of field corp[J]. Smart agriculture, 2022(4): 1-25.
|
| [5] |
XU Y, XUE X Y, SUN Z, et al. Joint path planning and scheduling for vehicle-assisted multiple Unmanned Aerial Systems plant protection operation[J]. Computers and electronics in agriculture, 2022, 200: ID 107221.
|
| [6] |
WANG N, LI S D, XIAO J X, et al. A collaborative scheduling and planning method for multiple machines in harvesting and transportation operations-Part Ⅰ: Harvester task allocation and sequence optimization[J]. Computers and electronics in agriculture, 2025, 232: ID 110060.
|
| [7] |
AHSAN Z, DANKOWICZ H. Optimal scheduling and sequencing for large-scale seeding operations[J]. Computers and electronics in agriculture, 2019, 163: ID 104728.
|
| [8] |
ALMADHOUN R, TAHA T, SENEVIRATNE L, et al. A survey on multi-robot coverage path planning for model reconstruction and mapping[J]. SN applied sciences, 2019, 1(8): ID 847.
|
| [9] |
SA I, POPOVIĆ M, KHANNA R, et al. WeedMap: A large-scale semantic weed mapping framework using aerial multispectral imaging and deep neural network for precision farming[J]. Remote sensing, 2018, 10(9): ID 1423.
|
| [10] |
BENDER A, WHELAN B, SUKKARIEH S. A high-resolution, multimodal data set for agricultural robotics: A Ladybird's-eye view of Brassica [J]. Journal of field robotics, 2020, 37(1): 73-96.
|
| [11] |
SANKEY T T, MCVAY J, SWETNAM T L, et al. UAV hyperspectral and lidar data and their fusion for arid and semi-arid land vegetation monitoring[J]. Remote sensing in ecology and conservation, 2018, 4(1): 20-33.
|
| [12] |
SKOCZEŃ M, OCHMAN M, SPYRA K, et al. Obstacle detection system for agricultural mobile robot application using RGB-D cameras[J]. Sensors, 2021, 21(16): ID 5292.
|
| [13] |
SHAFI U, MUMTAZ R, IQBAL N, et al. A multi-modal approach for crop health mapping using low altitude remote sensing, Internet of Things (IoT) and machine learning[J]. IEEE access, 2020, 8: 112708-112724.
|
| [14] |
CORTINAS E, EMMI L, GONZALEZ-DE-SANTOS P. Crop identification and growth stage determination for autonomous navigation of agricultural robots[J]. Agronomy, 2023, 13(12): ID 2873.
|
| [15] |
DENG X W, QI L, LIU Z W, et al. Weed target detection at seedling stage in paddy fields based on YOLOX[J]. PLoS one, 2023, 18(12): ID e0294709.
|
| [16] |
TSIAKAS K, PAPADIMITRIOU A, PECHLIVANI E M, et al. An autonomous navigation framework for holonomic mobile robots in confined agricultural environments[J]. Robotics, 2023, 12(6): ID 146.
|
| [17] |
CALTAGIRONE L, BELLONE M, SVENSSON L, et al. LIDAR–camera fusion for road detection using fully convolutional neural networks[J]. Robotics and autonomous systems, 2019, 111: 125-131.
|
| [18] |
LV P F, WANG B Q, CHENG F, et al. Multi-objective association detection of farmland obstacles based on information fusion of millimeter wave radar and camera[J]. Sensors, 2023, 23(1): ID 230.
|
| [19] |
SAMAL K, KUMAWAT H, SAHA P, et al. Task-driven RGB-lidar fusion for object tracking in resource-efficient autonomous system[J]. IEEE transactions on intelligent vehicles, 2022, 7(1): 102-112.
|
| [20] |
GUAN L M, CHEN Y, WANG G P, et al. Real-time vehicle detection framework based on the fusion of LiDAR and camera[J]. Electronics, 2020, 9(3): ID 451.
|
| [21] |
马楠, 曹姗姗, 白涛, 等. 农业复杂场景下多机器人协同SLAM研究进展与展望[J]. 智慧农业(中英文), 2024, 6(6): 23-43.
|
|
MA N, CAO S S, BAI T, et al. Research progress and prospect of multi-robot collaborative SLAM in complex agricultural scenarios[J]. Smart agriculture, 2024, 6(6): 23-43.
|
| [22] |
TIAN Y L, CHANG Y, HERRERA ARIAS F, et al. Kimera-multi: Robust, distributed, dense metric-semantic SLAM for multi-robot systems[J]. IEEE transactions on robotics, 2022, 38(4): 2022-2038.
|
| [23] |
LAJOIE P Y, BELTRAME G. Swarm-SLAM: Sparse decentralized collaborative simultaneous localization and mapping framework for multi-robot systems[J]. IEEE robotics and automation letters, 2024, 9(1): 475-482.
|
| [24] |
HUANG Y W, SHAN T X, CHEN F F, et al. DiSCo-SLAM: Distributed scan context-enabled multi-robot LiDAR SLAM with two-stage global-local graph optimization[J]. IEEE robotics and automation letters, 2022, 7(2): 1150-1157.
|
| [25] |
郝肇铁, 郭斌, 赵凯星, 等. 从规则驱动到群智涌现: 多机器人空地协同研究综述[J]. 自动化学报, 2024, 50(10): 1877-1905.
|
|
HAO Z T, GUO B, ZHAO K X, et al. From rule-driven to collective intelligence emergence: A review of research on multi-robot air-ground collaboration[J]. Acta automatica sinica, 2024, 50(10): 1877-1905.
|
| [26] |
DAI B, HE Y Q, GU F, et al. A vision-based autonomous aerial spray system for precision agriculture[C]// 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO). Piscataway, New Jersey, USA: IEEE, 2018: 507-513.
|
| [27] |
POTENA C, KHANNA R, NIETO J, et al. AgriColMap: Aerial-ground collaborative 3D mapping for precision farming[J]. IEEE robotics and automation letters, 2019, 4(2): 1085-1092.
|
| [28] |
AGUIAR A S, DOS SANTOS F N, CUNHA J B, et al. Localization and mapping for robots in agriculture and forestry: A survey[J]. Robotics, 2020, 9(4): 97.
|
| [29] |
ROVIRA-MÁS F, ZHANG Q, REID J F. Stereo vision three-dimensional terrain maps for precision agriculture[J]. Computers and electronics in agriculture, 2008, 60(2): 133-143.
|
| [30] |
ZHOU H X, WANG J T, CHEN Y Q, et al. Neural network-based SLAM/GNSS fusion localization algorithm for agricultural robots in orchard GNSS-degraded or denied environments[J]. Agriculture, 2025, 15(15): 1612.
|
| [31] |
PIERZCHAŁA M, GIGUÈRE P, ASTRUP R. Mapping forests using an unmanned ground vehicle with 3D LiDAR and graph-SLAM[J]. Computers and electronics in agriculture, 2018, 145: 217-225.
|
| [32] |
SANTOS L C, AGUIAR A S, SANTOS F N, et al. Navigation stack for robots working in steep slope vineyard[C]// Intelligent Systems and Applications. Cham, Germany: Springer, 2021: 264-285.
|
| [33] |
赵欣, 王万里, 董靓, 等. 面向无人驾驶农机的高精度农田地图构建[J]. 农业工程学报, 2022, 38(S1): 1-7.
|
|
ZHAO X, WANG W L, DONG J /L), et al. High precision farmland map construction for unmanned agricultural machinery[J]. Transactions of the Chinese society of agricultural engineering, 2022, 38(S1): 1-7.
|
| [34] |
FANG H, CHEN H, JIANG H, et al. Research on method of farmland obstacle boundary extraction in UAV remote sensing images[J]. Sensors, 2019, 19(20): 4431.
|
| [35] |
ZHANG M, LI L, WANG A C, et al. A novel farmland boundaries extraction and obstacle detection method based on unmanned aerial vehicle[C]// 2019 ASABE Annual International Meeting. St. Joseph, Michigan: American Society of Agricultural and Biological Engineers, 2019: 1900369.
|
| [36] |
杜蒙蒙, 刘颖超, 姬江涛, 等. 基于无人机与激光测距技术的农田地形测绘[J]. 农业工程学报, 2020, 36(22): 60-67.
|
|
DU M M, LIU Y C, JI J T, et al. Farmland topographic mapping based on UAV and LiDAR technology[J]. Transactions of the Chinese society of agricultural engineering, 2020, 36(22): 60-67.
|
| [37] |
DI TOMMASO S, WANG S, STREY R, et al. Mapping sugarcane globally at 10 m resolution using Global Ecosystem Dynamics Investigation (GEDI) and Sentinel-2[J]. Earth system science data, 2024, 16(10): 4931-4947.
|
| [38] |
WALDNER F, DIAKOGIANNIS F I, BATCHELOR K, et al. Detect, consolidate, delineate: Scalable mapping of field boundaries using satellite images[J]. Remote sensing, 2021, 13(11): 2197.
|
| [39] |
CAI Z W, HU Q, ZHANG X Y, et al. Improving agricultural field parcel delineation with a dual branch spatiotemporal fusion network by integrating multimodal satellite data[J]. ISPRS journal of photogrammetry and remote sensing, 2023, 205: 34-49.
|
| [40] |
ZHAO H, WU B F, ZHANG M, et al. A large-scale VHR parcel dataset and a novel hierarchical semantic boundary-guided network for agricultural parcel delineation[J]. ISPRS journal of photogrammetry and remote sensing, 2025, 221: 1-19.
|
| [41] |
GUO H W, MIAO Z H, JI J, et al. An effective collaboration evolutionary algorithm for multi-robot task allocation and scheduling in a smart farm[J]. Knowledge-based systems, 2024, 289: ID 111474.
|
| [42] |
王宁, 韩雨晓, 王雅萱, 等. 农业机器人全覆盖作业规划研究进展[J]. 农业机械学报, 2022, 53(S1): 1-19.
|
|
WANG N, HAN Y X, WANG Y X, et al. Research progress on full-coverage operation planning of agricultural robots[J]. Transactions of the Chinese society for agricultural machinery, 2022, 53(S1): 1-19.
|
| [43] |
KORSAH G A, STENTZ A, DIAS M B. A comprehensive taxonomy for multi-robot task allocation[J]. The international journal of robotics research, 2013, 32(12): 1495-1512.
|
| [44] |
D'URSO G, SMITH S L, METTU R, et al. Multi-vehicle refill scheduling with queueing[J]. Computers and electronics in agriculture, 2018, 144: 44-57.
|
| [45] |
胡志文. 绿色收割农机调度模型[J]. 上海农业学报, 2014, 30(6): 133-135.
|
|
HU Z W. A green reaping farm machine scheduling model[J]. Acta agriculturae Shanghai, 2014, 30(6): 133-135.
|
| [46] |
FERRER J C, CAWLEY AMAC, MATURANA S, et al. An optimization approach for scheduling wine grape harvest operations[J]. International journal of production economics, 2008, 112(2): 985-999.
|
| [47] |
王猛, 赵博, 刘阳春, 等. 同种农机机群动态作业任务分配方法[J]. 农业工程学报, 2021, 37(9): 199-210.
|
|
WANG M, ZHAO B, LIU Y C, et al. Dynamic task allocation method for the same type agricultural machinery group[J]. Transactions of the Chinese society of agricultural engineering, 2021, 37(9): 199-210.
|
| [48] |
宫金良, 王伟, 张彦斐, 等. 基于动态刺激响应模型的异质农业Agent群任务分配策略[J]. 农业机械学报, 2021, 52(5): 142-150.
|
|
GONG J L, WANG W, ZHANG Y F, et al. Task Allocation Strategy for Heterogeneous Agricultural Agent Groups Based on Dynamic Stimulus-Response Models [J]. Transactions of the Chinese society for agricultural machinery, 2021, 52(5): 142-150.
|
| [49] |
LIANG Y J, ZHOU K, WU C C. Dynamic task allocation method for heterogenous multiagent system in uncertain scenarios of agricultural field operation[J]. Journal of physics: Conference series, 2022, 2356(1): 012049.
|
| [50] |
LU Z W, ZHAO Z X, LONG L, et al. Multi-robot task allocation in agriculture scenarios based on the improved NSGA-II algorithm[C]// 2023 IEEE 98th Vehicular Technology Conference (VTC2023-Fall). Piscataway, New Jersey, USA: IEEE, 2023: 1-6.
|
| [51] |
CAO R Y, LI S C, JI Y H, et al. Task assignment of multiple agricultural machinery cooperation based on improved ant colony algorithm[J]. Computers and electronics in agriculture, 2021, 182: 105993.
|
| [52] |
周龙港, 刘婷, 卢劲竹. 基于Floyd和改进遗传算法的丘陵地区农田遍历路径规划[J]. 智慧农业(中英文), 2023, 5(4): 45-57.
|
|
ZHOU L G, LIU T, LU J Z. Traversal path planning for farmland in hilly areas based on floyd and improved genetic algorithm[J]. Smart agriculture, 2023, 5(4): 45-57.
|
| [53] |
LU Z W, WANG Y C, DAI F, et al. A reinforcement learning-based optimization method for task allocation of agricultural multi-robots clusters[J]. Computers and electrical engineering, 2024, 120: 109752.
|
| [54] |
DIN A, ISMAIL M Y, SHAH B, et al. A deep reinforcement learning-based multi-agent area coverage control for smart agriculture[J]. Computers and electrical engineering, 2022, 101: 108089.
|
| [55] |
JIANG Y M, HAO K R, CAI X, et al. An improved reinforcement-immune algorithm for agricultural resource allocation optimization[J]. Journal of computational science, 2018, 27: 320-328.
|
| [56] |
EDWARDS G, SØRENSEN C G, BOCHTIS D D, et al. Optimised schedules for sequential agricultural operations using a Tabu Search method[J]. Computers and electronics in agriculture, 2015, 117: 102-113.
|
| [57] |
LIANG H B, MA Y, CAO Z L, et al. SplitNet: A reinforcement learning based sequence splitting method for the MinMax multiple travelling salesman problem[J]. Proceedings of the AAAI conference on artificial intelligence, 2023, 37(7): 8720-8727.
|
| [58] |
CHOSET H, PIGNON P. Coverage path planning: The boustrophedon cellular decomposition[M]//Field and Service Robotics. London: Springer London, 1998: 203-209.
|
| [59] |
ACAR E U, CHOSET H, RIZZI A A, et al. Morse decompositions for coverage tasks[J]. The international journal of robotics research, 2002, 21(4): 331-344.
|
| [60] |
GUASTELLA D C, CANTELLI L, GIAMMELLO G, et al. Complete coverage path planning for aerial vehicle flocks deployed in outdoor environments[J]. Computers & electrical engineering, 2019, 75: 189-201.
|
| [61] |
GABRIELY Y, RIMON E. Spiral-STC: An on-line coverage algorithm of grid environments by a mobile robot[C]// Proceedings 2002 IEEE International Conference on Robotics and Automation. Piscataway, New Jersey, USA: IEEE, 2002: 954-960.
|
| [62] |
TANG J T, MA H. Mixed integer programming for time-optimal multi-robot coverage path planning with efficient heuristics[J]. IEEE robotics and automation letters, 2023, 8(10): 6491-6498.
|
| [63] |
KUSNUR T, LIKHACHEV M. Complete, decomposition-free coverage path planning[C]// 2022 IEEE 18th International Conference on Automation Science and Engineering (CASE). Piscataway, New Jersey, USA: IEEE, 2022: 1431-1437.
|
| [64] |
MIER G, VALENTE J, DE BRUIN S. Fields2Cover: An open-source coverage path planning library for unmanned agricultural vehicles[J]. IEEE robotics and automation letters, 2023, 8(4): 2166-2172.
|
| [65] |
TANG J T, MA H. Multi-robot connected Fermat spiral coverage[J]. Proceedings of the international conference on automated planning and scheduling, 2024, 34: 579-587.
|
| [66] |
WU C M, DAI C K, GONG X X, et al. Energy-efficient coverage path planning for general terrain surfaces[J]. IEEE robotics and automation letters, 2019, 4(3): 2584-2591.
|
| [67] |
IANENKO A, ARTAMONOV A, SARAPULOV G, et al. Coverage path planning with proximal policy optimization in a grid-based environment[C]// 2020 59th IEEE Conference on Decision and Control (CDC). Piscataway, New Jersey, USA: IEEE, 2021: 4099-4104.
|
| [68] |
LEI T J, LUO C M, JAN G E, et al. Deep learning-based complete coverage path planning with re-joint and obstacle fusion paradigm[J]. Frontiers in robotics and AI, 2022, 9: ID 843816.
|
| [69] |
KRISHNA LAKSHMANAN A, ELARA MOHAN R, RAMALINGAM B, et al. Complete coverage path planning using reinforcement learning for Tetromino based cleaning and maintenance robot[J]. Automation in construction, 2020, 112: 103078.
|
| [70] |
HÖFFMANN M, PATEL S, BÜSKENS C. Optimal coverage path planning for agricultural vehicles with curvature constraints[J]. Agriculture, 2023, 13(11): 2112.
|
| [71] |
KYAW P T, PAING A, THU T T, et al. Coverage path planning for decomposition reconfigurable grid-maps using deep reinforcement learning based travelling salesman problem[J]. IEEE access, 2020, 8: 225945-225956.
|
| [72] |
WANG Z K, ZHAO X Q, ZHANG J K, et al. APF-CPP: An artificial potential field based multi-robot online coverage path planning approach[J]. IEEE robotics and automation letters, 2024, 9(11): 9199-9206.
|
| [73] |
TANG J T, MA H. Large-scale multi-robot coverage path planning via local search[J]. Proceedings of the AAAI conference on artificial intelligence, 2024, 38(16): 17567-17574.
|
| [74] |
CARVALHO J P, AGUIAR A P. Deep reinforcement learning for zero-shot coverage path planning with mobile robots[J]. IEEE/CAA journal of automatica sinica, 2025, 12(8): 1594-1609.
|
| [75] |
MONTEMERLO M, BECKER J, BHAT S, et al. Junior: The stanford entry in the urban challenge[J]. Journal of field robotics, 2008, 25(9): 569-597.
|
| [76] |
STENTZ A. Optimal and efficient path planning for partially-known environments[C]// Proceedings of the 1994 IEEE International Conference on Robotics and Automation. Piscataway, New Jersey, USA: IEEE, 2002: 3310-3317.
|
| [77] |
BHATTACHARYA P, GAVRILOVA M L. Voronoi diagram in optimal path planning[C]// 4th International Symposium on Voronoi Diagrams in Science and Engineering (ISVD 2007). Piscataway, New Jersey, USA: IEEE, 2007: 38-47.
|
| [78] |
SALZMAN O, HALPERIN D. Asymptotically near-optimal RRT for fast, high-quality motion planning[J]. IEEE transactions on robotics, 2016, 32(3): 473-483.
|
| [79] |
GONG X, GAO Y F, WANG F B, et al. A local path planning algorithm for robots based on improved DWA[J]. Electronics, 2024, 13(15): 2965.
|
| [80] |
陈若彤, 刘继芳, 张志勇, 等. 规模化牛场智能巡检路径规划算法[J/OL]. 智慧农业(中英文), 2025: 1-14. (2025-06-13).
|
|
CHEN R T, LIU J F, ZHANG Z Y, et al. Intelligent inspection path planning algorithm for large-scale cattle farms[J/OL]. Smart agriculture, 2025: 1-14. (2025-06-13).
|
| [81] |
AFRAM A, JANABI-SHARIFI F. Theory and applications of HVAC control systems–A review of model predictive control (MPC)[J]. Building and environment, 2014, 72: 343-355.
|
| [82] |
WU J F, MA X H, PENG T R, et al. An improved timed elastic band (TEB) algorithm of autonomous ground vehicle (AGV) in complex environment[J]. Sensors, 2021, 21(24): 8312.
|
| [83] |
CHEN Y F, LIU M, EVERETT M, et al. Decentralized non-communicating multiagent collision avoidance with deep reinforcement learning[C]// 2017 IEEE International Conference on Robotics and Automation (ICRA). Piscataway, New Jersey, USA: IEEE, 2017: 285-292.
|
| [84] |
EVERETT M, CHEN Y F, HOW J P. Motion planning among dynamic, decision-making agents with deep reinforcement learning[C]// 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway, New Jersey, USA: IEEE, 2019: 3052-3059.
|
| [85] |
CHEN C G, LIU Y J, KREISS S, et al. Crowd-robot interaction: Crowd-aware robot navigation with attention-based deep reinforcement learning[C]// 2019 International Conference on Robotics and Automation (ICRA). Piscataway, New Jersey, USA: IEEE, 2019: 6015-6022.
|
| [86] |
SALZMANN T, KAUFMANN E, ARRIZABALAGA J, et al. Real-time neural MPC: Deep learning model predictive control for quadrotors and agile robotic platforms[J]. IEEE robotics and automation letters, 2023, 8(4): 2397-2404.
|
| [87] |
WANG S Q, HU Y Y, LIU Z N, et al. Research on adaptive obstacle avoidance algorithm of robot based on DDPG-DWA[J]. Computers and electrical engineering, 2023, 109: 108753.
|
| [88] |
HAN R H, WANG S, WANG S J, et al. NeuPAN: Direct point robot navigation with end-to-end model-based learning[J]. IEEE transactions on robotics, 2025, 41: 2804-2824.
|
| [89] |
WANG H W, LOU S J, JING J, et al. The EBS-A* algorithm: An improved A* algorithm for path planning[J]. PLoS one, 2022, 17(2): e0263841.
|
| [90] |
WANG S J, GAO R, HAN R H, et al. Adaptive environment modeling based reinforcement learning for collision avoidance in complex scenes[C]// 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway, New Jersey, USA: IEEE, 2022: 9011-9018.
|
| [91] |
HUANG R H, ZHU S T, DU Y L, et al. MoE-loco: Mixture of experts for multitask locomotion[EB/OL]. arXiv: 2503.08564, 2025.
|
| [92] |
LI L, LI J, ZHANG S Y. Review article: State-of-the-art trajectory tracking of autonomous vehicles[J]. Mechanical sciences, 2021, 12(1): 419-432.
|
| [93] |
FARAG W. Complex trajectory tracking using PID control for autonomous driving[J]. International journal of intelligent transportation systems research, 2020, 18(2): 356-366.
|
| [94] |
刘文龙, 王晨旭, 徐伟东, 等. 基于预瞄模型的农机路径跟踪模糊PID控制方法[J]. 农业工程, 2024, 14(7): 31-36.
|
|
LIU W L, WANG C X, XU W D, et al. Fuzzy PID control method of agricultural machinery path tracking based on preview model[J]. agricultural engineering, 2024, 14(7): 31-36.
|
| [95] |
AMERTET S, GEBRESENBET G, ALWAN H M. Optimizing the performance of a wheeled mobile robots for use in agriculture using a linear-quadratic regulator[J]. Robotics and autonomous systems, 2024, 174: 104642.
|
| [96] |
马悦琦, 迟瑞娟, 赵彦涛, 等. 基于模糊控制的插秧机LQR曲线路径跟踪控制器优化方法[J]. 农业机械学报, 2023, 54(S1): 1-8, 102.
|
|
MA Y Q, CHI R J, ZHAO Y T, et al. Optimization method of LQR curve path tracking controller for rice transplanter based on fuzzy control[J]. Transactions of the Chinese society for agricultural machinery, 2023, 54(S1): 1-8, 102.
|
| [97] |
SHIRZADEH M, SHOJAEEFARD M H, AMIRKHANI A, et al. Adaptive fuzzy nonlinear sliding-mode controller for a car-like robot[C]// 2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI). Piscataway, New Jersey, USA: IEEE, 2019: 686-691.
|
| [98] |
葛志康, 白晓平, 王卓, 等. 基于动力学建模的农机路径跟踪鲁棒滑模控制算法研究[J]. 农机化研究, 2025, 47(8): 1-9.
|
|
GE Z K, BAI X P, WANG Z, et al. Robust sliding mode control method for path tracking of unmanned agricultural vehicles based on dynamic modeling[J]. Journal of agricultural mechanization research, 2025, 47(8): 1-9.
|
| [99] |
SUN C Y, ZHANG X, ZHOU Q, et al. A model predictive controller with switched tracking error for autonomous vehicle path tracking[J]. IEEE access, 2019, 7: 53103-53114.
|
| [100] |
HE J, HU L, WANG P, et al. Path tracking control method and performance test based on agricultural machinery pose correction[J]. Computers and electronics in agriculture, 2022, 200: 107185.
|
| [101] |
王子杰, 刘国海, 张多, 等. 高地隙四轮独立驱动喷雾机路径跟踪模型预测控制[J]. 智慧农业(中英文), 2021, 3(3): 82-93.
|
|
WANG Z J, LIU G H, ZHANG D, et al. Path following model predictive control of four wheel independent drive high ground clearance sprayer[J]. Smart agriculture, 2021, 3(3): 82-93.
|
| [102] |
严国军, 贲能军, 杨彦, 等. 基于自适应模糊PID控制的农用作业机械轨迹跟踪系统研究[J]. 重庆理工大学学报(自然科学), 2019, 33(4): 83-87, 115.
|
|
YAN G J, BEN N J, YANG Y, et al. A novel adaptive fuzzy PID controller for trajectory tracking system of agricultural machinery[J]. Journal of Chongqing University of technology (natural science), 2019, 33(4): 83-87, 115.
|
| [103] |
王茂励, 段杰, 唐勇伟, 等. 基于模糊PID算法的农机自动转向系统研究[J]. 农机化研究, 2018, 40(11): 241-245.
|
|
WANG M L, DUAN J, TANG Y W, et al. Research on agricultural machinery automatic steering system based on fuzzy PID algorithm[J]. Journal of agricultural mechanization research, 2018, 40(11): 241-245.
|
| [104] |
CARLUCHO I, DE PAULA M, ACOSTA G G. An adaptive deep reinforcement learning approach for MIMO PID control of mobile robots[J]. ISA transactions, 2020, 102: 280-294.
|
| [105] |
OBRADOVIĆ J, KRIŽMANČIĆ M, BOGDAN S. Decentralized multi-robot formation control using reinforcement learning[C]// 2023 XXIX International Conference on Information, Communication and Automation Technologies (ICAT). Piscataway, New Jersey, USA: IEEE, 2023: 1-7.
|
| [106] |
栾世杰, 孙叶丰, 贡亮, 等. 基于MPC延时补偿器的农机多机器人编队行驶轨迹跟踪方法[J]. 智慧农业(中英文), 2024, 6(3): 69-81.
|
|
LUAN S J, SUN Y F, GONG L, et al. Trajectory tracking method of agricultural machinery MultiRobot Formation operation based on MPC delay compensator[J]. Smart agriculture, 2024, 6(3): 69-81.
|
| [107] |
杨琰, 张瑞瑞, 张林焕, 等. 基于DQN的智能农机路径跟踪控制研究[J]. 农机化研究, 2025, 47(3): 28-34.
|
|
YANG Y, ZHANG R R, ZHANG L H, et al. DQN-based path tracking control for intelligent agricultural machinery[J]. Journal of agricultural mechanization research, 2025, 47(3): 28-34.
|