XIAO Deqin1,2,3(
), LYU Yuding1,2, HUANG Yigui1,2, CUAN Kaixuan1,2
Received:2025-07-30
Online:2025-12-02
Foundation items:National Key Research and Development Program(2021YFD200802);The Innovation Team of Key Common Technologies for Smart Agriculture under the Guangdong Modern Agricultural Industry System(2024CXTD28)
corresponding author:
XIAO Deqin, E-mail: deqinx@scau.edu.cnCLC Number:
XIAO Deqin, LYU Yuding, HUANG Yigui, CUAN Kaixuan. Research Progress and Future Prospect of Pig Intelligent Detection Technology[J]. Smart Agriculture, doi: 10.12133/j.smartag.SA202507048.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202507048
Table 1
The type of data required by the intelligent detection algorithm
| 数据类型 | 描述 | 应用方向 |
|---|---|---|
| 红外图像 | 通过红外摄像头采集的图像数据 | 检测生猪的体温,用于健康监测和疾病预警 |
| 可见光图像 | 通过可见光摄像头采集到的图像或者视频数据 | 猪只行为识别、体重估计、盘点、异常识别特征等数据识别 |
| 深度图像 | 通过深度相机来获取猪只的三维形态信息 | 对猪只体尺、体重的估测 |
| 传感器数据 | 从三轴加速度传感器、温度传感器、震动传感器采集到的猪只行为、生理数据 | 猪只的活动水平识别、体温、行为 |
| 音频数据 | 通过音频监控系统提取得到的猪只声音数据 | 猪只异常声音 |
Table 2
Mainstream algorithms for intelligent pig detection
| 算法类型 | 检测指标 | 优点 | 缺点 |
|---|---|---|---|
| 基于红外图像的体温检测 | 耳根/前额/眼睛/腹部温度(最大值、平均值) | 非接触式测量,减少应激与交叉感染 | 遮挡时精度下降(如侧卧);环境温度干扰 |
| 基于可见光的行为识别 | 采食、攻击、站立、坐姿等行为 | 成本低,部署方便;识别准确率高(>95%) | 复杂场景(光照变化、猪群堆叠)易误检 |
| 基于目标跟踪的行为检测 | 个体运动轨迹、行为持续时间(如饮水、爬跨) | 支持长时间监测;跟踪精度高 | 群体遮挡易导致ID切换;计算复杂度高 |
| 基于图像分割的检测 | 猪只轮廓、个体区分、体尺参数 | 像素级精准划分;支持密集群体识别 | 实时性差;模型参数量大 |
| 基于三维图像的体重估计 | 体重、体尺 | 非接触式 | 设备成本高;动态姿态影响精度 |
| 基于可穿戴传感器检测 | 活动量、体温、采食频率 | 个体精准追踪;全天候监测 | 传感器易脱落;数据传输耗能高 |
| 基于异常声音的检测 | 咳嗽、异常叫声 | 可远程监测呼吸道疾病 | 背景噪声干扰;样本标注成本高 |
Table 3
Application of object detection to pig behavior recognition
| 行为 | 参考文献 | 算法 | 评价指标 | 结果/% |
|---|---|---|---|---|
| 采食 | YANG等[ | Faster R-CNN | 准确率 | 99.60 |
| Chen等[ | 深度可分离卷积网络(Extreme Inception,Xception)+长短期记忆网络(Long Short-Term Memory, LSTM) | 准确率 | 98.40 | |
| 李菊霞等[ | YOLOv4 | 平均精度(Average Precision, AP) | 94.50 | |
| 陆舟等[ | YOLOv5L+ShuffleNet | 准确率 | 96.40 | |
| 行走 | 杨宏宇等[ | 改进的YOLOv4 | 准确率 | 88.00 |
| 仝志民等[ | 改进的YOLOv8 | 均值平均精度(mean Averaage Precision, mAP) | 96.00 | |
| 攻击 | 高云等[ | 改进的三维卷积神经网络(Convolutional 3D, C3D) | 准确率 | 95.70 |
| CHEN等[ | 视觉几何组16层网络(Visual Geometry Group 16-layer network, VGG-16)+LSTM | 准确率 | 97.20 | |
| 李艳文等[ | 改进的YOLOX | 准确率 | 98.55 | |
| 坐姿 | ZHENG等[ | Faster R-CNN | AP | 90.70 |
| 薛月菊等[ | 改进的Faster R-CNN | AP | 94.62 | |
| ZHU等[ | 改进的双流RGB-D Faster R-CNN | AP | 96.49 | |
| SHAO等[ | YOLOv5、DeepLabv3+ | 准确率 | 92.45 | |
| JI等[ | 改进的YOLOX | mAP | 95.70 | |
| HUANG等[ | 高效能YOLO(High-Effect YOLO, HE-YOLO) | AP | 98.41 | |
| 站立 | 薛月菊等[ | 改进的Faster R-CNN | AP | 96.73 |
| ZHU等[ | 改进的双流RGB-D Faster R-CNN | AP | 99.74 | |
| 性行为 | ZHANG等[ | SSD+移动卷积神经网络(MobileNet) | AP | 92.30 |
| LI等[ | 改进的SlowFast网络 | 准确率 | 97.63 | |
| ZHANG等[ | ResNet101+时序片段网络(Temporal Segment Networks, TSN) | 准确率 | 98.99 |
Table 4
Application of object tracking in pig behavior detection
| 参考文献 | 检测算法 | 跟踪精度/% | 跟踪时长 | 行为 |
|---|---|---|---|---|
| 李亿杨等[ | 粒子滤波算法 | 93.40 | 30 s内 | 采食 |
| GAN等[ | 图卷积网络 | 97.04 | 30 s | 社交嗅闻、攻击、玩耍 |
| 涂淑琴等[ | 改进TransTrack | 92.00 | 1 min | 采食、站立、躺卧 |
| TRAN等[ | YOLOv7+改进的DeepSORT | 93.60 | 30 min内 | 采食、站立、躺着 |
| MELFSEN等[ | ByteTrack | 98.20 | 未说明 | 采食、站立、躺着、行走、攻击、玩耍 |
| TU等[ | YOLOX+改进的稳健关联多行人跟踪算法(Robust Associations Multi-Pedestrian Tracking, BoT-SORT) | 97.00 | 1 min | 采食、站立、躺着、其他 |
| 王亚彬等[ | YOLOv8+无迹卡尔曼滤波跟踪算法(Unscented Kalman Filter Track, UKFTrack) | 97.70 | 8 min | 行走、站立 |
| TU等[ | 集成OBB、关键点检测、MOT及跟踪后处理-猪只攻击关系识别(OBB and keypoint detection, MOT, and post-tracking processing-pig aggression relationship identification, OKByte-AR) | 98.50 | 未说明 | 攻击 |
Table 5
Application of image segmentation in pig detection
| 应用 | 参考文献 | 算法 | 分割评价指标 | 结果/% |
|---|---|---|---|---|
| 语义分割 | 杨阿庆等[ | VGG16+FCN | MIoU | 95.16 |
| YANG等[ | FCN | MIoU | 95.00 | |
| 胡志伟等[ | VGG16+UNet | MIoU | 86.60 | |
| BRÜNGER等[ | 残差网络34层(Residual Network with 34 Layers,ResNet34)+UNet | 准确率 | 95.86 | |
| 实例分割 | LI等[ | Mask R-CNN | 平均像素精度 | 83.83 |
| 高云等[ | 改进的Mask R-CNN | 准确率 | 85.40 | |
| 高云等[ | FPN+Mask R-CNN | 准确率 | 89.25 | |
| 刘坤等[ | ResNet50+Mask R-CNN+循环残差注意力(Recurrent Residual Attention,RRA) | AP | 89.20 | |
| HU等[ | 双注意力机制模块(Dual attention module,DAB)+ResNet101+混合任务级联(Hybrid Task Cascade,HTC)+Mask R-CNN | AP | 93.10 | |
| TU等[ | 掩膜评分R-CNN(mask scoring R-CNN,Ms R-CNN)+软非极大值抑制(soft non-maximum suppression,soft-NMS) | 准确率 | 94.11 |
Table 6
Research on intelligent testing equipment of pigs
| 装备 | 研究团队 | 核心技术/方法 | 功能特点 |
|---|---|---|---|
| 估重装备 | 樊士冉等[ | 分体式手持3D相机+估重显示终端 | 便携式采集立体图片并保存结果 |
| 薛素金等[ | 3D卷积神经网络+面部/耳牌识别装置 | 身份识别后栅栏内自动估重 | |
| 桂志明等[ | 多模态技术 | 适用于日常猪场估重 | |
| 景俊年等[ | 物联网称重系统(称重机构+识别模块) | 实时监测动物体重 | |
| 健康检测装备 | 邹远炳等[ | 分布流式计算+节点资源调度器算法 | 规模化猪只视频流数据处理 |
| 杨栋等[ | 阈值对比分析算法 | 异常健康状况预警 | |
| 谢继华等[ | 猪脸识别+RFID技术+体温传感器 | 体温监测与饮水次数记录,异常预警 | |
| 肖德琴等[ | 红外测温技术+声音语料特征分析 | 结合耳部温度与声音特征判断猪只健康状态 | |
| 轨道式巡检机器人 | 林探宇等[ | 滑轨平台+红外热像仪+RFID阅读器 | 限位栏猪场双模体温监测 |
| 刘龙申等[ | 轨道机器人+行为检测算法 | 哺乳母仔猪群体行为一体化检测 | |
| 刘战启等[ | 吊轨搭载毫米波雷达和摄像头 | 自主巡场、智能调节监测角度 | |
| 地面式巡检机器人 | 曾志雄等[ | 铝型材框架+减震悬架系统+有限元仿真 | 复杂地面环境自适应移动 |
| 吕成军等[ | 行走/供能/控制/检测模块集成 | 减少人工巡视时间成本 | |
| 方明等[ | 活动轮联动排水降温系统 | 移动时自动降温 |
| [1] | 林惠敏, 刘柳锋. 中美猪肉产品贸易竞争力实证分析[J]. 现代畜牧科技, 2024(6): 152-155. |
| LIN H M, LIU L F. Empirical analysis of the trade competitiveness of Sino-US pork products[J]. Modern animal husbandry science & technology, 2024(6): 152-155. | |
| [2] | 闫红军, 马乃祥, 庄向婷, 等. 2024年集约化养殖模式发展状况下,猪的福利问题与改进措施[J]. 猪业科学, 2025, 42(2): 36-38. |
| YAN H J, MA N X, ZHUANG X T, et al. Under the development of intensive farming mode in 2024, pig welfare problems and improvement measures[J]. Swine industry science, 2025, 42(2): 36-38. | |
| [3] | 杨亮, 王辉, 陈睿鹏, 等. 智能养猪工厂的研究进展与展望[J]. 华南农业大学学报, 2023, 44(1): 13-23. |
| YANG L, WANG H, CHEN R P, et al. Research progress and prospect of intelligent pig factory[J]. Journal of South China agricultural university, 2023, 44(1): 13-23. | |
| [4] | WU J Y, YANG Q M, XIAO D Q, et al. Quantifying behavioural patterns for group-housed pigs based on deep learning and statistical analysis[J]. Computers and electronics in agriculture, 2025, 237: ID 110521. |
| [5] | KÜHNEMUND A, GÖTZ S, RECKE G. Automatic detection of group recumbency in pigs via AI-supported camera systems[J]. Animals, 2023, 13(13): ID 2205. |
| [6] | YANG G, LI Q F, ZHAO C J, et al. TGFN-SD: A text-guided multimodal fusion network for swine disease diagnosis[J]. Artificial intelligence in agriculture, 2025, 15(2): 266-279. |
| [7] | 王乔琪. 牧原股份的"猪哲学"与"养猪科技"[N]. 上海证券报, 2025-06-30(6). |
| [8] | 星农天下. 科技"大拿"的新玩法[J]. 农家之友, 2019(2): 28-29. |
| XING N. A new way of playing science and technology "big win"[J]. Farmers' friend, 2019(2): 28-29. | |
| [9] | CAI Z J, CUI J L, YUAN H B, et al. Application and research progress of infrared thermography in temperature measurement of livestock and poultry animals: A review[J]. Computers and electronics in agriculture, 2023, 205: ID 107586. |
| [10] | 明月. 体温变化在猪病诊疗中的应用[J]. 畜牧兽医科技信息, 2021(3): 167. |
| MING Y. Application of temperature change in diagnosis and treatment of pig diseases[J]. Chinese journal of animal husbandry and veterinary medicine, 2021(3): 167. | |
| [11] | SOERENSEN D D, PEDERSEN L J. Infrared skin temperature measurements for monitoring health in pigs: A review[J]. Acta veterinaria scandinavica, 2015, 57(1): ID 5. |
| [12] | STUKELJ M, HAJDINJAK M, PUSNIK I. Stress-free measurement of body temperature of pigs by using thermal imaging-useful fact or wishful thinking[J]. Computers and electronics in agriculture, 2022, 193: ID 106656. |
| [13] | ZHANG Z Q, WANG H, LIU T H, et al. Accurate detection method of pig's temperature based on non-point source thermal infrared image[J]. CAAI transactions on intelligence technology, 2021, 6(3): 312-323. |
| [14] | 肖德琴, 林思聪, 刘勤, 等. 基于红外热成像的生猪耳温自动提取算法[J]. 农业机械学报, 2021, 52(8): 255-262. |
| XIAO D Q, LIN S C, LIU Q, et al. Automatic extraction algorithm of pig ear temperature based on infrared thermal imaging[J]. Transactions of the Chinese society for agricultural machinery, 2021, 52(8): 255-262. | |
| [15] | 刘刚, 冯彦坤, 康熙, 等. 基于改进YOLO v4的生猪耳根温度热红外视频检测方法[J]. 农业机械学报, 2023, 54(2): 240-248. |
| LIU G, FENG Y K, KANG X, et al. Thermal infrared video detection method of pig ear root temperature based on improved YOLO v4[J]. Transactions of the Chinese society for agricultural machinery, 2023, 54(2): 240-248. | |
| [16] | XIE Q J, WU M R, BAO J, et al. A deep learning-based detection method for pig body temperature using infrared thermography[J]. Computers and electronics in agriculture, 2023, 213: ID 108200. |
| [17] | 田浩楠, 华婧伊, 张少帅, 等. 基于红外热成像与线性回归拟合的母猪体温检测技术研究[J]. 智能化农业装备学报(中英文), 2023(1): 36-41. |
| TIAN H N, HUA J Y, ZHANG S S, et al. Research on the measurement of sow body temperature based on infrared thermography and linear regression fitting[J]. Journal of intelligent agricultural mechanization, 2023(1): 36-41. | |
| [18] | XIANG R, ZHANG Y, LIN H J, et al. Body temperature detection of group-housed pigs based on the pairing of left and right ear roots in thermal images[J]. Animals, 2025, 15(5): ID 642. |
| [19] | ZHANG B, XIAO D Q, LIU J B, et al. Pig eye area temperature extraction algorithm based on registered images[J]. Computers and electronics in agriculture, 2024, 217: ID 108549. |
| [20] | CUAN K X, HU F Y, WANG X S, et al. Automatic body temperature detection of group-housed piglets based on infrared and visible image fusion[J]. Artificial intelligence in agriculture, 2026, 16(1): 1-11. |
| [21] | REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: Unified, real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2016: 779-788. |
| [22] | LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot MultiBox detector[C]// Computer Vision – ECCV 2016. Cham, Germany: Springer, 2016: 21-37. |
| [23] | REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6): 1137-1149. |
| [24] | YANG Q M, XIAO D Q, LIN S C. Feeding behavior recognition for group-housed pigs with the Faster R-CNN[J]. Computers and electronics in agriculture, 2018, 155: 453-460. |
| [25] | CHEN C, ZHU W X, STEIBEL J, et al. Recognition of feeding behaviour of pigs and determination of feeding time of each pig by a video-based deep learning method[J]. Computers and electronics in agriculture, 2020, 176: ID 105642. |
| [26] | 李菊霞, 李艳文, 牛帆, 等. 基于YOLOv4的猪只饮食行为检测方法[J]. 农业机械学报, 2021, 52(3): 251-256. |
| LI J X, LI Y W, NIU F, et al. Detection method of pig's dietary behavior based on YOLOv4[J]. Transactions of the Chinese society for agricultural machinery, 2021, 52(3): 251-256. | |
| [27] | 陆舟, 沈明霞, 刘龙申, 等. 基于轻量化网络与注意力机制的育肥猪采食行为识别方法研究[J]. 南京农业大学学报, 2023, 46(4): 802-812. |
| LU Z, SHEN M X, LIU L S, et al. Study on recognition method of feeding behavior of finishing pigs based on lightweight network and attention mechanism[J]. Journal of Nanjing agricultural university, 2023, 46(4): 802-812. | |
| [28] | 杨宏宇, 陈立畅, 谢小龙, 等. 改进YOLO v4模型在版纳微型猪只行为识别中的研究[J]. 黑龙江畜牧兽医, 2024(19): 46-54, 118, 119. |
| YANG H Y, CHEN L C, XIE X L, et al. Research on behavior recognition method of Banna mini-pigs based on improved YOLO v4[J]. Heilongjiang animal science and veterinary medicine, 2024(19): 46-54, 118, 119. | |
| [29] | 仝志民, 徐天哲, 石传淼, 等. 基于CBCW-YOLO v8的猪只行为识别方法研究[J]. 农业机械学报, 2025, 56(2): 411-419. |
| TONG Z M, XU T Z, SHI C M, et al. Research on pig behavior recognition method based on CBCW-YOLO v8[J]. Transactions of the Chinese society for agricultural machinery, 2025, 56(2): 411-419. | |
| [30] | 高云, 陈斌, 廖慧敏, 等. 群养猪侵略性行为的深度学习识别方法[J]. 农业工程学报, 2019, 35(23): 192-200. |
| GAO Y, CHEN B, LIAO H M, et al. Deep learning identification method for aggressive behavior of herd pigs[J]. Transactions of the Chinese society of agricultural engineering, 2019, 35(23): 192-200. | |
| [31] | CHEN C, ZHU W X, STEIBEL J, et al. Recognition of aggressive episodes of pigs based on convolutional neural network and long short-term memory[J]. Computers and electronics in agriculture, 2020, 169: ID 105166. |
| [32] | 李艳文, 李菊霞, 纳腾潇, 等. 基于YOLOX-NGS的群养猪只攻击行为识别[J]. 农业工程学报, 2023, 39(24): 177-184. |
| LI Y W, LI J X, NA T X, et al. Identification of aggressive behavior of group pigs based on YOLOX-NGS[J]. Transactions of the Chinese society of agricultural engineering, 2023, 39(24): 177-184. | |
| [33] | ZHENG C, ZHU X M, YANG X F, et al. Automatic recognition of lactating sow postures from depth images by deep learning detector[J]. Computers and electronics in agriculture, 2018, 147: 51-63. |
| [34] | 薛月菊, 朱勋沐, 郑婵, 等. 基于改进FasterR-CNN识别深度视频图像哺乳母猪姿态[J]. 农业工程学报, 2018, 34(9): 189-196. |
| XUE Y J, ZHU X M, ZHENG C, et al. Recognition of posture of lactating sows based on improved FasterR-CNN in depth video images[J]. Transactions of the Chinese society of agricultural engineering, 2018, 34(9): 189-196. | |
| [35] | ZHU X M, CHEN C X, ZHENG B, et al. Automatic recognition of lactating sow postures by refined two-stream RGB-D faster R-CNN[J]. Biosystems engineering, 2020, 189: 116-132. |
| [36] | SHAO H M, PU J Y, MU J. Pig-posture recognition based on computer vision: Dataset and exploration[J]. Animals, 2021, 11(5): ID 1295. |
| [37] | JI H Y, YU J H, LAO F D, et al. Automatic position detection and posture recognition of grouped pigs based on deep learning[J]. Agriculture, 2022, 12(9): ID 1314. |
| [38] | HUANG L, XU L J, WANG Y C, et al. Efficient detection method of pig-posture behavior based on multiple attention mechanism[J]. Computational intelligence and neuroscience, 2022, 2022: ID 1759542. |
| [39] | ZHANG Y Q, CAI J H, XIAO D Q, et al. Real-time sow behavior detection based on deep learning[J]. Computers and electronics in agriculture, 2019, 163: ID 104884. |
| [40] | LI D, ZHANG K F, LI Z B, et al. A spatiotemporal convolutional network for multi-behavior recognition of pigs[J]. Sensors, 2020, 20(8): ID 2381. |
| [41] | ZHANG K F, LI D, HUANG J Y, et al. Automated video behavior recognition of pigs using two-stream convolutional networks[J]. Sensors, 2020, 20(4): ID1085. |
| [42] | BOLME D, BEVERIDGE J R, DRAPER B A, et al. Visual object tracking using adaptive correlation filters[C]// 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway, New Jersey, USA: IEEE, 2010: 2544-2550. |
| [43] | HENRIQUES J F, CASEIRO R, MARTINS P, et al. Exploiting the circulant structure of tracking-by-detection with kernels[C]// Computer Vision – ECCV 2012. Cham, Germany: Springer, 2012: 702-715. |
| [44] | HENRIQUES J F, CASEIRO R, MARTINS P, et al. High-speed tracking with kernelized correlation filters[J]. IEEE transactions on pattern analysis and machine intelligence, 2015, 37(3): 583-596. |
| [45] | BEWLEY A, GE Z Y, OTT L, et al. Simple online and realtime tracking[C]// 2016 IEEE International Conference on Image Processing (ICIP). Piscataway, New Jersey, USA: IEEE, 2016: 3464-3468. |
| [46] | WOJKE N, BEWLEY A, PAULUS D. Simple online and realtime tracking with a deep association metric[C]// 2017 IEEE International Conference on Image Processing (ICIP). Piscataway, New Jersey, USA: IEEE, 2017: 3645-3649. |
| [47] | DU Y H, ZHAO Z C, SONG Y, et al. StrongSORT: Make DeepSORT great again[J]. IEEE transactions on multimedia, 2023, 25: 8725-8737. |
| [48] | 杨秋妹, 肖德琴, 张根兴. 猪只饮水行为机器视觉自动识别[J]. 农业机械学报, 2018, 49(6): 232-238. |
| YANG Q M, XIAO D Q, ZHANG G X. Automatic pig drinking behavior recognition with machine vision[J]. Transactions of the Chinese society for agricultural machinery, 2018, 49(6): 232-238. | |
| [49] | YANG Q M, XIAO D Q, CAI J H. Pig mounting behaviour recognition based on video spatial-temporal features[J]. Biosystems engineering, 2021, 206: 55-66. |
| [50] | LIU D, OCZAK M, MASCHAT K, et al. A computer vision-based method for spatial-temporal action recognition of tail-biting behaviour in group-housed pigs[J]. Biosystems engineering, 2020, 195: 27-41. |
| [51] | TU S Q, CAI Y F, LIANG Y, et al. Tracking and monitoring of individual pig behavior based on YOLOv5-Byte[J]. Computers and electronics in agriculture, 2024, 221: ID 108997. |
| [52] | 张丽雯, 周昊, 朱启兵. 基于PigsTrack跟踪器的群养生猪多目标跟踪[J]. 农业工程学报, 2023, 39(16): 181-190. |
| ZHANG L W, ZHOU H, ZHU Q B. Multi-target tracking of group-housed pigs based on PigsTrack tracker[J]. Transactions of the Chinese society of agricultural engineering, 2023, 39(16): 181-190. | |
| [53] | YANG Q M, HUI X Y, HUANG Y G, et al. A long-term video tracking method for group-housed pigs[J]. Animals, 2024, 14(10): ID 1505. |
| [54] | 姚裔芃, 徐晨, 陈鸿基, 等. 基于关键点检测和多目标跟踪的猪只体尺估计[J]. 华南农业大学学报, 2024, 45(5): 722-729. |
| YAO Y P, XU C, CHEN H J, et al. Estimation of pig body size based on key point detection and multi-target tracking[J]. Journal of South China agricultural university, 2024, 45(5): 722-729. | |
| [55] | CHEN J X, LIU L, LI P, et al. PKL-Track: A Keypoint-Optimized approach for piglet tracking and activity measurement[J]. Computers and electronics in agriculture, 2025, 237: ID 110578. |
| [56] | 李亿杨, 孙龙清, 孙鑫鑫. 基于多特征融合的粒子滤波生猪采食行为跟踪[J]. 农业工程学报, 2017, 33(S1): 246-252. |
| LI Y Y, SUN L Q, SUN X X. Automatic tracking of pig feeding behavior based on particle filter with multi-feature fusion[J]. Transactions of the Chinese society of agricultural engineering, 2017, 33(S1): 246-252. | |
| [57] | GAN H M, XU C G, HOU W H, et al. Spatiotemporal graph convolutional network for automated detection and analysis of social behaviours among pre-weaning piglets[J]. Biosystems engineering, 2022, 217: 102-114. |
| [58] | 涂淑琴, 黄正鑫, 梁云, 等. 改进TransTrack多目标生猪行为跟踪方法[J]. 农业工程学报, 2023, 39(15): 172-180. |
| TU S Q, HUANG Z X, LIANG Y, et al. Methods for multi-target tracking of pig action using improved TransTrack[J]. Transactions of the Chinese society of agricultural engineering, 2023, 39(15): 172-180. | |
| [59] | TRAN D D, THANH N D. Pig health abnormality detection based on behavior patterns in activity periods using deep learning[J]. International journal of advanced computer science and applications, 2023, 14(5): DOI:10.14569/IJACSA.2023.0140564.. |
| [60] | MELFSEN A, LEPSIEN A, BOSSELMANN J, et al. Describing behavior sequences of fattening pigs using process mining on video data and automated pig behavior recognition[J]. Agriculture, 2023, 13(8): ID 1639. |
| [61] | TU S Q, CAO Y F, LIANG Y, et al. Tracking and automatic behavioral analysis of group-housed pigs based on YOLOX+BoT-SORT-slim[J]. Smart agricultural technology, 2024, 9: ID 100566. |
| [62] | 王亚彬, 徐爱俊, 周素茵, 等. 基于Byte的生猪多目标跟踪算法[J]. 农业工程学报, 2025, 41(7): 145-155. |
| WANG Y B, XU A J, ZHOU S Y, et al. Multi-object tracking of pig behavior using byte algorithm[J]. Transactions of the Chinese society of agricultural engineering, 2025, 41(7): 145-155. | |
| [63] | TU S Q, CAO Y F, MAO L, et al. The OKByte-AR: A multi-stage MOT framework for identifying aggressive interactions in pigs[J]. Computers and electronics in agriculture, 2025, 239: ID 110935. |
| [64] | LONG J, SHELHAMER E, DARRELL T. Fully convolutional networks for semantic segmentation[C]// 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2015: 3431-3440. |
| [65] | RONNEBERGER O, FISCHER P, BROX T. U-Net: Convolutional networks for biomedical image segmentation[C]// Medical Image Computing and Computer-Assisted Intervention. Cham, Germany: Springer, 2015: 234-241. |
| [66] | CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]// Computer Vision – ECCV 2018. Cham, Germany: Springer, 2018: 833-851. |
| [67] | HE K M, GKIOXARI G, DOLLAR P, et al. Mask R-CNN[C]//2017 IEEE International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2017: 2980-2988. |
| [68] | HUANG Z J, HUANG L C, GONG Y C, et al. Mask scoring R-CNN[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2020: 6402-6411. |
| [69] | BOLYA D, ZHOU C, XIAO F Y, et al. YOLACT: Real-time instance segmentation[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2019: 9156-9165. |
| [70] | WANG X L, KONG T, SHEN C H, et al. SOLO: Segmenting objects by locations[C]// Computer Vision – ECCV 2020. Cham, Germany: Springer, 2020: 649-665. |
| [71] | 李丹, 张凯锋, 李行健, 等. 基于Mask R-CNN的猪只爬跨行为识别[J]. 农业机械学报, 2019, 50(S1): 261-266, 275. |
| LI D, ZHANG K F, LI H /X)J, et al. Mounting behavior recognition for pigs based on mask R-CNN[J]. Transactions of the Chinese society for agricultural machinery, 2019, 50(S1): 261-266, 275. | |
| [72] | MA R H, PARK J S, KIM S H, et al. Application of a deep learning-based instance segmentation model for behavior classification of pigs[J]. Journal of institute of control, robotics and systems, 2022, 28(4): 326-333. |
| [73] | 王鲁, 刘晴, 曹月, 等. 基于改进Cascade Mask R-CNN与协同注意力机制的群猪姿态识别[J]. 农业工程学报, 2023, 39(4): 144-153. |
| WANG L, LIU Q, CAO Y, et al. Posture recognition of group-housed pigs using improved Cascade Mask R-CNN and cooperative attention mechanism[J]. Transactions of the Chinese society of agricultural engineering, 2023, 39(4): 144-153. | |
| [74] | 孔商羽, 陈春雨. 基于多任务学习的猪只体重和体况评分预测[J]. 黑龙江大学工程学报, 2022, 13(2): 70-77. |
| KONG S Y, CHEN C Y. Multi-tasking learning on prediction of pig weight and body condition score[J]. Journal of engineering of Heilongjiang university, 2022, 13(2): 70-77. | |
| [75] | LIU J B, XIAO D Q, LIU Y F, et al. A pig mass estimation model based on deep learning without constraint[J]. Animals, 2023, 13(8): ID 1376. |
| [76] | 罗世林, 何秀文, 欧阳梦, 等. 基于实例分割和机器学习的育肥猪群体体重估测方法研究[J]. 中国农机化学报, 2025, 46(10): 153-160. |
| LUO S L, HE X W, OUYANG M, et al. Research on weight estimation method for fattening pig population based on instance segmentation and machine learning[J]. Journal of Chinese agricultural mechanization, 2025, 46(10): 153-160. | |
| [77] | XIE C Q, CANG Y J, LOU X Z, et al. A novel approach based on a modified mask R-CNN for the weight prediction of live pigs[J]. Artificial intelligence in agriculture, 2024, 12: 19-28. |
| [78] | 杨阿庆, 薛月菊, 黄华盛, 等. 基于全卷积网络的哺乳母猪图像分割[J]. 农业工程学报, 2017, 33(23): 219-225. |
| YANG A Q, XUE Y J, HUANG H S, et al. Lactating sow image segmentation based on fully convolutional networks[J]. Transactions of the Chinese society of agricultural engineering, 2017, 33(23): 219-225. | |
| [79] | YANG A Q, HUANG H S, ZHENG C, et al. High-accuracy image segmentation for lactating sows using a fully convolutional network[J]. Biosystems engineering, 2018, 176: 36-47. |
| [80] | 胡志伟, 杨华, 娄甜田, 等. 基于全卷积网络的生猪轮廓提取[J]. 华南农业大学学报, 2018, 39(6): 111-119. |
| HU Z W, YANG H, LOU T T, et al. Extraction of pig contour based on fully convolutional networks[J]. Journal of South China agricultural university, 2018, 39(6): 111-119. | |
| [81] | BRÜNGER J, GENTZ M, TRAULSEN I, et al. Panoptic segmentation of individual pigs for posture recognition[J]. Sensors, 2020, 20(13): ID 3710. |
| [82] | LI D, CHEN Y F, ZHANG K F, et al. Mounting behaviour recognition for pigs based on deep learning[J]. Sensors, 2019, 19(22): ID 4924. |
| [83] | 高云, 郭继亮, 黎煊, 等. 基于深度学习的群猪图像实例分割方法[J]. 农业机械学报, 2019, 50(4): 179-187. |
| GAO Y, GUO J L, LI X, et al. Instance-level segmentation method for group pig images based on deep learning[J]. Transactions of the Chinese society for agricultural machinery, 2019, 50(4): 179-187. | |
| [84] | 高云, 廖慧敏, 黎煊, 等. 基于双金字塔网络的RGB-D群猪图像分割方法[J]. 农业机械学报, 2020, 51(7): 36-43. |
| GAO Y, LIAO H M, LI X, et al. RGB-D segmentation method for group piglets images based on double-pyramid network[J]. Transactions of the Chinese society for agricultural machinery, 2020, 51(7): 36-43. | |
| [85] | 刘坤, 杨怀卿, 杨华, 等. 基于循环残差注意力的群养生猪实例分割[J]. 华南农业大学学报, 2020, 41(6): 169-178. |
| LIU K, YANG H Q, YANG H, et al. Instance segmentation of group-housed pigs based on recurrent residual attention[J]. Journal of South China agricultural university, 2020, 41(6): 169-178. | |
| [86] | HU Z W, YANG H, LOU T T. Dual attention-guided feature pyramid network for instance segmentation of group pigs[J]. Computers and electronics in agriculture, 2021, 186: ID 106140. |
| [87] | TU S Q, YUAN W J, LIANG Y, et al. Automatic detection and segmentation for group-housed pigs based on PigMS R-CNN[J]. Sensors, 2021, 21(9): ID 3251. |
| [88] | KONGSRO J. Estimation of pig weight using a Microsoft Kinect prototype imaging system[J]. Computers and electronics in agriculture, 2014, 109: 32-35. |
| [89] | SHI C, TENG G H, LI Z. An approach of pig weight estimation using binocular stereo system based on LabVIEW[J]. Computers and electronics in agriculture, 2016, 129: 37-43. |
| [90] | PEZZUOLO A, GUARINO M, SARTORI L, et al. On-barn pig weight estimation based on body measurements by a Kinect v1 depth camera[J]. Computers and electronics in agriculture, 2018, 148: 29-36. |
| [91] | CANG Y, HE H X, QIAO Y L. An intelligent pig weights estimate method based on deep learning in sow stall environments[J]. IEEE access, 2019, 7: 164867-164875. |
| [92] | 李卓. 基于立体视觉技术的生猪体重估测研究[D]. 北京: 中国农业大学, 2016. |
| LI Z. Research of pig weight estimation based on stereo vision technology[D]. Beijing: China Agricultural University, 2016. | |
| [93] | 卞智逸, 林探宇, 吴彻, 等. 一种基于深度图像的猪只体重估测方法和设备: CN114170292A[P]. 2022-03-11. |
| [94] | TAN Z J, LIU J B, XIAO D Q, et al. Dual-stream fusion network with ConvNeXtV2 for pig weight estimation using RGB-D data in aisles[J]. Animals, 2023, 13(24): ID 3755. |
| [95] | 尹令, 蔡更元, 田绪红, 等. 多视角深度相机的猪体三维点云重构及体尺测量[J]. 农业工程学报, 2019, 35(23): 201-208. |
| YIN L, CAI G Y, TIAN X H, et al. Three dimensional point cloud reconstruction and body size measurement of pigs based on multi-view depth camera[J]. Transactions of the Chinese society of agricultural engineering, 2019, 35(23): 201-208. | |
| [96] | OKAYAMA T, KUBOTA Y, TOYODA A, et al. Estimating body weight of pigs from posture analysis using a depth camera[J]. Animal science journal, 2021, 92 1: DOI:10.1111/ASJ.13626. |
| [97] | LI G X, LIU X L, MA Y F, et al. Body size measurement and live body weight estimation for pigs based on back surface point clouds[J]. Biosystems engineering, 2022, 218: 10-22. |
| [98] | LIU Z H, HUA J Y, XUE H X, et al. Body weight estimation for pigs based on 3D hybrid filter and convolutional neural network[J]. Sensors, 2023, 23(18): ID 7730. |
| [99] | SELLE M, KIRCHER M, DORSCH U, et al. An accessible and intuitive approach to 3D data modeling for morphometric surface evaluation in pig farming[J]. Computers and electronics in agriculture, 2024, 225: ID 109327. |
| [100] | LIN J Y, CHEN H Y, WU R K, et al. Calculating volume of pig point cloud based on improved Poisson reconstruction[J]. Animals, 2024, 14(8): ID 1210. |
| [101] | OCZAK M, MASCHAT K, BERCKMANS D, et al. Can an automated labelling method based on accelerometer data replace a human labeller?–Postural profile of farrowing sows[J]. Computers and electronics in agriculture, 2016, 127: 168-175. |
| [102] | SCHEEL C, TRAULSEN I, AUER W, et al. Detecting lameness in sows from ear tag-sampled acceleration data using wavelets[J]. Animal, 2017, 11(11): 2076-2083. |
| [103] | DE BRUIJN B G C, DE MOL R M, HOGEWERF P H, et al. A correlated-variables model for monitoring individual growing-finishing pig's behavior by RFID registrations[J]. Smart agricultural technology, 2023, 4: ID 100189. |
| [104] | HUANG Y G, XIAO D Q, LIU J B, et al. Analysis of pig activity level and body temperature variation based on ear tag data[J]. Computers and electronics in agriculture, 2024, 219: ID 108768. |
| [105] | YIN J J, CHEN Y F, HUANG Y G, et al. Analysis and classification of pig health status using hourly activity data: Combining statistical analysis and machine learning[J]. Applied animal behaviour science, 2025, 282: ID 106488. |
| [106] | 张栖铭, 袁瑞临, 范凡, 等. 基于SVM算法的猪声音识别的研究[J]. 电脑知识与技术, 2017, 13(10): 162-164. |
| ZHANG Q M, YUAN R L, FAN F, et al. Research on pig voice recognition based on SVM algorithm[J]. Computer knowledge and technology, 2017, 13(10): 162-164. | |
| [107] | 黎煊, 赵建, 高云, 等. 基于连续语音识别技术的猪连续咳嗽声识别[J]. 农业工程学报, 2019, 35(6): 174-180. |
| LI X, ZHAO J, GAO Y, et al. Recognition of continuous cough sound in pigs based on continuous speech recognition technology[J]. Transactions of the Chinese society of agricultural engineering, 2019, 35(6): 174-180. | |
| [108] | 顾小平, 吴浩, 陈佳豪, 等. 基于DE-VRF的猪声音分类识别[J]. 计算机应用与软件, 2023, 40(3): 241-247. |
| GU X P, WU H, CHEN J H, et al. Classification and recognition of pig voice based on DE-VRF[J]. Computer applications and software, 2023, 40(3): 241-247. | |
| [109] | FERRARI S, SILVA M, GUARINO M, et al. Cough sound analysis to identify respiratory infection in pigs[J]. Computers and electronics in agriculture, 2008, 64(2): 318-325. |
| [110] | CHUNG Y, OH S, LEE J, et al. Automatic detection and recognition of pig wasting diseases using sound data in audio surveillance systems[J]. Sensors, 2013, 13(10): 12929-12942. |
| [111] | 李光昌. 基于声视觉融合的猪只健康状态评价研究[D]. 赣州: 江西理工大学, 2022. |
| LI G C. Research on evaluation of pig health status based on audio-visual fusion[D]. Ganzhou: Jiangxi University of Science and Technology, 2022. | |
| [112] | 苍岩, 罗顺元, 乔玉龙, 等. 基于深层神经网络的猪声音分类[J]. 农业工程学报, 2020, 36(9): 195-204. |
| CANG Y, LUO S Y, QIAO Y L, et al. Pig voice classification based on deep neural network[J]. Transactions of the Chinese society of agricultural engineering, 2020, 36(9): 195-204. | |
| [113] | 沈明霞, 王梦雨, 刘龙申, 等. 基于深度神经网络的猪咳嗽声识别方法[J]. 农业机械学报, 2022, 53(5): 257-266. |
| SHEN M X, WANG M Y, LIU L S, et al. Recognition method of pig cough sound based on deep neural network[J]. Transactions of the Chinese society for agricultural machinery, 2022, 53(5): 257-266. | |
| [114] | WANG B Y, QI J W, AN X P, et al. Heterogeneous fusion of biometric and deep physiological features for accurate porcine cough recognition[J]. PLoS one, 2024, 19(2): ID e0297655. |
| [115] | 谢杰, 龚鸣敏. 基于隐马尔科夫模型的猪只声音分类监测方法[J]. 中南农业科技, 2025(1): 104-109. |
| XIE J, GONG M M. Hidden Markov model-based pig sound classification monitoring method[J]. South-central agricultural science and technology, 2025(1): 104-109. | |
| [116] | XIE Y T, WANG J, CHEN C, et al. Sound identification of abnormal pig vocalizations: Enhancing livestock welfare monitoring on smart farms[J]. Information processing & management, 2024, 61(4): ID 103770. |
| [117] | MA J C, LI Z S, WANG H, et al. On field recognition of pig cough based on multimodal audio representation and fusion with contrastive learning[J]. Computers and electronics in agriculture, 2025, 238: ID 110842. |
| [118] | FANCOM. Automatic pig farm with Fancom's automation systems[EB/OL]. [2025-09-20]. . |
| [119] | HL. OptiSCAN, Pesée par la vision des porcs charcutiers - H+L[EB/OL]. [2025-09-20]. . |
| [120] | PIGBROTHER. Pig weight measurement by cameras | Weighing pigs without a scale[EB/OL]. [2025-09-20]. . |
| [121] | CORNTEC. PIGI | Corntec[EB/OL]. [2025-09-20]. . |
| [122] | 郑州邦茂称重设备有限公司. EID Hog(Pig) Weigh Crate - Zhengzhou Bangmao Weighing Equipment Co., Ltd[EB/OL]. [2025-09-20]. . |
| [123] | 樊士冉, 燕凯, 杜晓冬, 等. 一种用于猪只估重的装置: CN218381245U[P]. 2023-01-24. |
| [124] | 薛素金, 杨焜. 基于3D卷积神经网络的猪只估重装置: CN216559277U[P]. 2022-05-17. |
| [125] | 桂志明, 王文杰, 梁靖. 一种基于深度学习多模态技术在大栏轨道机器人上的猪只估重方法: CN119763146A[P]. 2025-04-04. |
| [126] | 景俊年, 邓利斌. 一种物联网称重站系统及应用: CN119779458A[P]. 2025-04-08. |
| [127] | 邹远炳, 孙龙清, 李玥, 等. 基于分布式流式计算的生猪养殖视频监测分析系统[J]. 农业机械学报, 2017, 48(S1): 365-373. |
| ZOU Y B, SUN L Q, LI Y, et al. Video monitoring and analysis system for pig breeding based on distributed flow computing[J]. Transactions of the Chinese society for agricultural machinery, 2017, 48(S1): 365-373. | |
| [128] | 杨栋, 陈卫峰, 林序周, 等. 一种猪只健康智能监测方法及其系统: CN107148920A[P]. 2017-09-12. |
| [129] | 谢继华, 尹显东, 郑培坤, 等. 基于猪脸识别和RFID识别的猪只健康管理系统及方法: CN111626205A[P]. 2020-09-04. |
| [130] | 肖德琴, 刘俊彬, 谭祖杰, 等. 一种基于声音和体温的猪只健康监测方法及系统: CN114639017A[P]. 2022-06-17. |
| [131] | DUTCHMAN B. Sow management: the best sow equipment & feeding systems - Big Dutchman[EB/OL]. [2025-09-20]. . |
| [132] | 林探宇, 谭祖杰, 吴彻, 等. 一种限位栏猪场的猪只监控装置及猪只巡检滑轨机器人: CN216434763U[P]. 2022-05-03. |
| [133] | 刘龙申, 周杰, 蒋涛, 等. 一种基于巡检机器人的哺乳期母仔猪行为一体化检测系统: CN118334704A[P]. 2024-07-12. |
| [134] | 刘战启, 郗晓龙, 李爱梅, 等. 基于毫米波雷达的吊轨机器人猪只信息采集方法和系统: CN118534454A[P]. 2024-08-23. |
| [135] | 曾志雄, 余乔东, 吕恩利, 等. 规模化猪场巡检机器人底盘设计与试验[J]. 中国农机化学报, 2020, 41(7): 55-62. |
| ZENG Z X, YU Q D, LV E L, et al. Design and experiment of inspection robot chassis for pig farm[J]. Journal of Chinese agricultural mechanization, 2020, 41(7): 55-62. | |
| [136] | 吕成军, 王璐, 李伟. 一种养猪场用巡检机器人: CN210307840U[P]. 2020-04-14. |
| [137] | 方明, 徐波. 一种养猪场用巡检机器人: CN218052640U[P]. 2022-12-16. |
| [138] | 杨秋妹, 陈淼彬, 黄一桂, 等. 基于改进YOLO v5n的猪只盘点算法[J]. 农业机械学报, 2023, 54(1): 251-262. |
| YANG Q M, CHEN M B, HUANG Y G, et al. Pig counting algorithm based on improved YOLO v5n[J]. Transactions of the Chinese society for agricultural machinery, 2023, 54(1): 251-262. |
| [1] | GUO Qi, FAN Yixuan, YAN Xinhuan, LIU Xuemei, CAO Ning, WANG Zhen, PAN Shaoxiang, TAN Mengnan, ZHENG Xiaodong, SONG Ye. Advances in the Application of Multi-source Data Fusion Technology in Non-Destructive Detection of Apple [J]. Smart Agriculture, 2025, 7(4): 31-46. |
| [2] | HU Songtao, ZHAI Ruifang, WANG Yinghua, LIU Zhi, ZHU Jianzhong, REN He, YANG Wanneng, SONG Peng. Extraction of Potato Plant Phenotypic Parameters Based on Multi-Source Data [J]. Smart Agriculture, 2023, 5(1): 132-145. |
| [3] | GUO Yangyang, DU Shuzeng, QIAO Yongliang, LIANG Dong. Advances in the Applications of Deep Learning Technology for Livestock Smart Farming [J]. Smart Agriculture, 2023, 5(1): 52-65. |
| [4] | KANG Xi, LIU Gang, CHU Mengyuan, LI Qian, WANG Yanchao. Advances and Challenges in Physiological Parameters Monitoring and Diseases Diagnosing of Dairy Cows Based on Computer Vision [J]. Smart Agriculture, 2022, 4(2): 1-18. |
| [5] | Diao Xingliang, Yang Zaijie, Li Qifeng, Yu Jingxin, Zheng Wengang, Shi Leigang. Regionalization research of summer corn planting in North China Plain based on multi-source data [J]. Smart Agriculture, 2019, 1(2): 73-84. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||