Smart Agriculture ›› 2025, Vol. 7 ›› Issue (6): 149-160.doi: 10.12133/j.smartag.SA202508026
• Special Issue--Remote Sensing + AI Empowering the Modernization of Agriculture and Rural Areas • Previous Articles Next Articles
LU Yihang1,2,3, DONG Wen4(
), ZHANG Xin1,4, YAN Ruoyi1,2,3, ZHANG Yujia5, TANG Tao5
Received:2025-08-28
Online:2025-11-30
Foundation items:National Key Research and Development Program of China(2021YFB3901300)
About author:LU Yihang, E-mail: 11230856@stu.lzjtu.edu.cn
corresponding author:
CLC Number:
LU Yihang, DONG Wen, ZHANG Xin, YAN Ruoyi, ZHANG Yujia, TANG Tao. Physics-Constrained PROSAIL-cGAN Approach for Spectral Sample Augmentation and LAI Inversion of Winter Wheat[J]. Smart Agriculture, 2025, 7(6): 149-160.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202508026
Table 2
Input parameter range of the PROSAIL model
| 参数类别 | 参数名称 | 符号 | 单位 | 取值 |
|---|---|---|---|---|
| 叶片光学 | 叶绿素含量 | C ab | μg/cm2 | 20~60 |
| 类胡萝卜素含量 | C ar | μg/cm2 | 3~25 | |
| 叶片水含量 | C w | μg/cm2 | 0.005~0.03 | |
| 干物质含量 | C m | μg/cm2 | 0.005~0.03 | |
| 冠层结构 | 叶面积指数 | LAI | — | 1~8.0 |
| 叶片角度分布 | ALA | (º) | 30~90 | |
| 热点参数 | Hotspot | — | 0.0~0.5 | |
| 土壤背景 | 土壤亮度(Proportion of Soil Brightness, Psoil) | Psoil | — | 0.1~0.9 |
| 几何观测 | 太阳天顶角(Solar Zenith Angle, SZA) | SZA | (º) | 26~28 |
| 观测天顶角(View Zenith Angle, VZA) | VZA | (º) | 0 | |
| 方位角差(Relative Azimuth Angle, RAA) | RAA | (º) | 0~180 |
Table 3
Calculation formula of vegetation index
| 植被指数 | 计算公式 | 参考文献 |
|---|---|---|
| 归一化植被指数(Normalized Difference Vegetation Index, NDVI) | (5) | [ |
| 归一化红边植被指数(Normalized Difference Red Edge Index, NDRE) | (6) | [ |
| 绿色叶绿素指数(Green Chlorophyll Index, GCI) | (7) | [ |
| 土壤调节植被指数(Soil-Adjusted Vegetation Index, SAVI) | (8) | [ |
| 植被比值指数(Ratio Vegetation Index, RVI) | (9) | [ |
| 植被近红外反射率(Near-Infrared Reflectance of Vegetation, NIRv) | (10) | [ |
| 近红外红边比值(Near-Infrared Red-Edge, NIR_RE) | NIR_RE (11) | [ |
Table 4
Comparison of modeling accuracy under different data combination strategies
| 建模方法 | R 2 | RMSE | MAE |
|---|---|---|---|
| LUT方法 | 0.353 0 | 1.284 0 | 1.017 0 |
| 实测-RF | 0.648 8 | 0.863 6 | 0.687 3 |
| 实测-XGBoost | 0.680 1 | 0.859 9 | 0.677 5 |
| cGAN-RF | 0.745 0 | 0.740 2 | 0.508 2 |
| cGAN-XGBoost | 0.739 0 | 0.721 2 | 0.505 1 |
| PROSAIL-cGAN-RF | 0.848 8 | 0.540 9 | 0.293 7 |
| PROSAIL-cGAN-XGBoost | 0.827 9 | 0.577 1 | 0.286 4 |
| [1] |
陈家华, 张立福, 黄长平, 等. 基于Sentinel-2A影像光谱和纹理特征的冬小麦叶面积指数估算模型研究[J]. 遥感技术与应用, 2024, 39(2): 290-305.
|
|
|
|
| [2] |
马战林, 文枫, 周颖杰, 等. 基于作物生长模型与机器学习算法的区域冬小麦估产[J]. 农业机械学报, 2023, 54(6): 136-147.
|
|
|
|
| [3] |
杜一博, 朱瑞飞, 巩加龙, 等. 基于吉林一号光谱星影像的农作物叶面积指数反演[J]. 遥感技术与应用, 2023, 38(4): 816-826.
|
|
|
|
| [4] |
李雪玲, 董莹莹, 朱溢佞, 等. 基于EnMAP卫星和深度神经网络的LAI遥感反演方法[J]. 红外与毫米波学报, 2020, 39(1): 111-119.
|
|
|
|
| [5] |
谢智东, 谭信, 袁昕旺, 等. 基于生成对抗数据增强支持向量机的小样本信号调制识别算法[J]. 电子与信息学报, 2023, 45(6): 2071-2080.
|
|
|
|
| [6] |
赵燕红, 侯鹏, 蒋金豹, 等. 植被生态遥感参数定量反演研究方法进展[J]. 遥感学报, 2021, 25(11): 2173-2197.
|
|
|
|
| [7] |
|
| [8] |
刘建伟, 谢浩杰, 罗雄麟. 生成对抗网络在各领域应用研究进展[J]. 自动化学报, 2020, 46(12): 2500-2536.
|
|
|
|
| [9] |
吕利叶, 鲁玉军, 王硕, 等. 代理模型技术及其应用: 现状与展望[J]. 机械工程学报, 2024, 60(3): 254-281.
|
|
|
|
| [10] |
赵一静, 王晓利, 侯西勇, 等. 2003—2019年山东省冬小麦关键物候期时空特征[J]. 生态学报, 2021, 41(19): 7785-7795.
|
|
|
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
汪彦龙, 王钧, 李广, 等. 采用机器学习优化PROSAIL模型的青贮玉米叶面积指数反演[J]. 农业工程学报, 2025, 41(9): 134-142.
|
|
|
|
| [16] |
马建威, 黄诗峰, 李纪人, 等. 改进Sobol算法支持下的PROSAIL模型参数全局敏感性分析[J]. 测绘通报, 2016(3): 33-35, 106.
|
|
|
|
| [17] |
|
| [18] |
|
| [19] |
王枭轩, 卢小平, 杨泽楠, 等. 基于PROSAIL结合VMG模型的冬小麦叶面积指数反演方法[J]. 农业机械学报, 2022, 53(6): 209-216.
|
|
|
|
| [20] |
任建强, 张宁丹, 刘杏认, 等. 基于哨兵-2A模拟反射率及其影像的冬小麦收获指数估算[J]. 农业机械学报, 2022, 53(12): 231-243.
|
|
|
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
李健, 江洪, 罗文彬, 等. 融合无人机多光谱和纹理特征的马铃薯LAI估算[J]. 华南农业大学学报, 2023, 44(1): 93-101.
|
|
|
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
徐雯靓, 王少军. PROSAIL模型模拟下的植被指数土壤调节能力比较与适用环境分析[J]. 遥感学报, 2014, 18(4): 826-842.
|
|
|
|
| [30] |
于丰华, 许童羽, 郭忠辉, 等. 基于红边优化植被指数的寒地水稻叶片叶绿素含量遥感反演研究[J]. 智慧农业(中英文), 2020(1): 77-86.
|
|
|
|
| [31] |
|
| [32] |
|
| [1] | LIU Jie, GUO Jiaxin, ZHANG Jiahao, ZHANG Bingchao, XIONG Jie, CAO Jianpeng, WU Shangrong, DENG Yingbin, CHEN Guipeng. Method for Estimating Leaf Area Index of Winter Rapeseed Based on Fusion of Vegetation Indices and Texture Features [J]. Smart Agriculture, 2025, 7(6): 161-173. |
| [2] | DAI Shengpei, LUO Hongxia, ZHENG Qian, HU Yingying, LI Hailiang, LI Maofen, YU Xuan, CHEN Bangqian. Comparison of Remote Sensing Estimation Models for Leaf Area Index of Rubber Plantation in Hainan Island [J]. Smart Agriculture, 2021, 3(2): 45-54. |
| [3] | SHU Meiyan, CHEN Xiangyang, WANG Xiqing, MA Yuntao. Estimation of Maize Leaf Area Index and Aboveground Biomass Based on Hyperspectral Data [J]. Smart Agriculture, 2021, 3(1): 29-39. |
| [4] | SHAO Guomin, WANG Yajie, HAN Wenting. Estimation Method of Leaf Area Index for Summer Maize Using UAV-Based Multispectral Remote Sensing [J]. Smart Agriculture, 2020, 2(3): 118-128. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||