Smart Agriculture ›› 2025, Vol. 7 ›› Issue (6): 161-173.doi: 10.12133/j.smartag.SA202507018
• Special Issue--Remote Sensing + AI Empowering the Modernization of Agriculture and Rural Areas • Previous Articles
LIU Jie1,2, GUO Jiaxin2, ZHANG Jiahao1,2, ZHANG Bingchao3, XIONG Jie3, CAO Jianpeng2, WU Shangrong4, DENG Yingbin5, CHEN Guipeng2(
)
Received:2025-07-11
Online:2025-11-30
Foundation items:Jiangxi Special Fund for Agro-scientific Research in the Collaborative Innovation(JXXTCX202606); Jiangxi Agriculture Research System-Smart Agriculture Position(JXARS-16); Jiangxi Provincial Project for Cultivating High-level and High-skilled Leading Talents (Gan Ren She Zi 〔2025〕 No. 2)(赣人社字〔2025〕2号); General Program of the National Natural Science Foundation of China(42271374)
About author:LIU Jie, E-mail: 772003854@qq.com
corresponding author:
CLC Number:
LIU Jie, GUO Jiaxin, ZHANG Jiahao, ZHANG Bingchao, XIONG Jie, CAO Jianpeng, WU Shangrong, DENG Yingbin, CHEN Guipeng. Method for Estimating Leaf Area Index of Winter Rapeseed Based on Fusion of Vegetation Indices and Texture Features[J]. Smart Agriculture, 2025, 7(6): 161-173.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202507018
Table 4
Table of model parameter settings for winter rapeseed LAI estimation research
| 模型 | 核心参数 | 参数说明与取值范围 |
|---|---|---|
| SVR | 核函数(Kernel) | 默认使用RBF核函数 |
| 惩罚参数(C) | 对数均匀分布: 1e0~1e2 | |
| Epsilon | [0.01, 0.05, 0.1, 0.2] | |
| Gamma | ['scale', 'auto'] + 对数均匀分布: 1e-4~1e-1 | |
| XGBoost | 学习率(Learning_rate) | 均匀分布: 0.01~0.21 |
| 最大树深(Max_depth) | 整数均匀分布: 3~6 | |
| 最小子权重(Min_child_weight) | 整数均匀分布: 1~5 | |
| 列采样比例(Colsample_bytree) | [0.6, 0.7, 0.8, 0.9, 1.0] | |
| Gamma | 均匀分布: 0~0.5 | |
| L1正则化(Reg_alpha) | [0, 0.1, 0.5, 1] | |
| L2正则化(Reg_lambda) | [0.5, 1, 5] | |
| MLR | 无特殊超参数 | 使用普通最小二乘 |
Table 6
Table of the selection frequency of the top 10 features across models with different input feature schemes
| 特征名称 | VIs模型选择频率 | TFs模型选择频率 | VTFs模型选择频率 |
|---|---|---|---|
| SR | 1.00 | — | 1.00 |
| CIRE | 1.00 | — | 1.00 |
| NDRE | 1.00 | — | 1.00 |
| B | 1.00 | — | — |
| GNDVI | 1.00 | — | — |
| NIR | 1.00 | — | 1.00 |
| R | 1.00 | — | — |
| NDVI | 1.00 | — | — |
| RE | 1.00 | — | — |
| OSAVI | 0.80 | — | — |
| NIR-entropy | — | 1.00 | 1.00 |
| G-variance | — | 1.00 | 1.00 |
| NIR-mean | — | 1.00 | — |
| R-contrast | — | 1.00 | 0.60 |
| B-correlation | — | 1.00 | 0.60 |
| G-dissimilarity | — | 1.00 | — |
| NIR-homogeneity | — | 0.80 | — |
| RE-correlation | — | 0.60 | — |
| G-correlation | — | 0.60 | 0.40 |
| R-entropy | — | 0.60 | 0.60 |
Table 7
Machine learning model inversion results for canopy LAI Across the whole growth stage of oilseed rape based on different input features
| 生育期 | 特征类型 | SVR | XGBOOST | MLR | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| R 2 | RMSE | MAE | R 2 | RMSE | MAE | R 2 | RMSE | MAE | ||
| 苗期 | VIs | 0.66 | 0.26 | 0.20 | 0.49 | 0.31 | 0.23 | 0.63 | 0.27 | 0.21 |
| TFs | 0.02 | 0.43 | 0.31 | 0.01 | 0.43 | 0.32 | 0.05 | 0.43 | 0.33 | |
| VTFs | 0.59 | 0.28 | 0.21 | 0.51 | 0.30 | 0.23 | 0.67 | 0.25 | 0.20 | |
| 蕾薹期 | VIs | 0.19 | 0.68 | 0.51 | 0.21 | 0.67 | 0.49 | 0.33 | 0.62 | 0.47 |
| TFs | 0.43 | 0.58 | 0.41 | 0.31 | 0.63 | 0.43 | 0.33 | 0.62 | 0.49 | |
| VTFs | 0.54 | 0.52 | 0.40 | 0.29 | 0.64 | 0.47 | 0.42 | 0.58 | 0.44 | |
| 花期 | VIs | 0.33 | 0.35 | 0.27 | 0.42 | 0.32 | 0.26 | 0.29 | 0.48 | 0.31 |
| TFs | 0.32 | 0.35 | 0.27 | 0.27 | 0.36 | 0.28 | 0.32 | 0.35 | 0.27 | |
| VTFs | 0.37 | 0.34 | 0.26 | 0.52 | 0.30 | 0.22 | 0.24 | 0.37 | 0.29 | |
| 角果期 | VIs | 0.29 | 0.41 | 0.32 | 0.41 | 0.37 | 0.29 | 0.39 | 0.38 | 0.31 |
| TFs | 0.27 | 0.51 | 0.39 | 0.30 | 0.41 | 0.30 | 0.26 | 0.59 | 0.43 | |
| VTFs | 0.49 | 0.34 | 0.26 | 0.48 | 0.35 | 0.27 | 0.46 | 0.36 | 0.28 | |
| 全生育期 | VIs | 0.86 | 0.44 | 0.35 | 0.88 | 0.41 | 0.31 | 0.85 | 0.46 | 0.37 |
| TFs | 0.85 | 0.45 | 0.32 | 0.83 | 0.48 | 0.35 | 0.83 | 0.48 | 0.36 | |
| VTFs | 0.90 | 0.39 | 0.29 | 0.87 | 0.45 | 0.31 | 0.83 | 0.51 | 0.39 | |
| [1] |
马宇靖, 吴尚蓉, 杨鹏, 等. 油料作物产量遥感监测研究进展与挑战[J]. 智慧农业(中英文), 2023, 5(3): 1-16.
|
|
|
|
| [2] |
|
| [3] |
李方一, 黄璜, 官春云, 等. 作物叶面积测量的研究进展[J]. 湖南农业大学学报(自然科学版), 2021, 47(3): 274-282.
|
|
|
|
| [4] |
徐乐园, 毛克彪, 郭中华, 等. 卷积神经网络在农业遥感图像语义分割中的应用综述[J]. 农业展望, 2024, 20(2): 70-75.
|
|
|
|
| [5] |
|
| [6] |
胡健波, 张健. 无人机遥感在生态学中的应用进展[J]. 生态学报, 2018, 38(1): 20-30.
|
|
|
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
郭立笑, 陈志超, 马彦鹏, 等. 基于无人机多光谱和多波段组合纹理的马铃薯LAI估算[J]. 光谱学与光谱分析, 2024, 44(12): 3443-3454.
|
|
|
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
王俊, 吴振伟, 姜海, 等. 基于随机森林及遥感植被指数的无人农场水稻产量预测研究[J]. 智能化农业装备学报(中英文), 2025(2): 97-104.
|
|
|
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [1] | LU Yihang, DONG Wen, ZHANG Xin, YAN Ruoyi, ZHANG Yujia, TANG Tao. Physics-Constrained PROSAIL-cGAN Approach for Spectral Sample Augmentation and LAI Inversion of Winter Wheat [J]. Smart Agriculture, 2025, 7(6): 149-160. |
| [2] | BAI Ruibin, WANG Hui, WANG Hongpeng, HONG Jiashun, ZHOU Junhui, YANG Jian. Rapid and Non-Destructive Analysis Method of Hawthorn Moisture Content Based on Hyperspectral Imaging Technology [J]. Smart Agriculture, 2025, 7(4): 95-107. |
| [3] | LI Zusheng, TANG Jishen, KUANG Yingchun. A Lightweight Model for Detecting Small Targets of Litchi Pests Based on Improved YOLOv10n [J]. Smart Agriculture, 2025, 7(2): 146-159. |
| [4] | LIU Liqi, WEI Guangyuan, ZHOU Ping. Prediction and Mapping of Soil Total Nitrogen Using GF-5 Image Based on Machine Learning Optimization Modeling [J]. Smart Agriculture, 2024, 6(5): 61-73. |
| [5] | SHEN Yanyan, ZHAO Yutao, CHEN Gengshen, LYU Zhengang, ZHAO Feng, YANG Wanneng, MENG Ran. Identification and Severity Classification of Typical Maize Foliar Diseases Based on Hyperspectral Data [J]. Smart Agriculture, 2024, 6(2): 28-39. |
| [6] | ZHANG Jing, ZHAO Zexuan, ZHAO Yanru, BU Hongchao, WU Xingyu. Oilseed Rape Sclerotinia in Hyperspectral Images Segmentation Method Based on Bi-GRU and Spatial-Spectral Information Fusion [J]. Smart Agriculture, 2024, 6(2): 40-48. |
| [7] | GUO Wang, YANG Yusen, WU Huarui, ZHU Huaji, MIAO Yisheng, GU Jingqiu. Big Models in Agriculture: Key Technologies, Application and Future Directions [J]. Smart Agriculture, 2024, 6(2): 1-13. |
| [8] | JIA Wenshen, LYU Haolin, ZHANG Shang, QIN Yingdong, ZHOU Wei. Using a Portable Visible-near Infrared Spectrometer and Machine Learning to Distinguish and Quantify Mold Contamination in Wheat [J]. Smart Agriculture, 2024, 6(1): 89-100. |
| [9] | LONG Jianing, ZHANG Zhao, LIU Xiaohang, LI Yunxia, RUI Zhaoyu, YU Jiangfan, ZHANG Man, FLORES Paulo, HAN Zhexiong, HU Can, WANG Xufeng. Wheat Lodging Types Detection Based on UAV Image Using Improved EfficientNetV2 [J]. Smart Agriculture, 2023, 5(3): 62-74. |
| [10] | YE Dapeng, CHEN Chen, LI Huilin, LEI Yingxiao, WENG Haiyong, QU Fangfang. Visible/NIR Spectral Inversion of Malondialdehyde Content in JUNCAO Based on Deep Convolutional Gengrative Adversarial Network [J]. Smart Agriculture, 2023, 5(3): 132-141. |
| [11] | SHI Jiefeng, HUANG Wei, FAN Xieyang, LI Xiuhua, LU Yangxu, JIANG Zhuhui, WANG Zeping, LUO Wei, ZHANG Muqing. Yield Prediction Models in Guangxi Sugarcane Planting Regions Based on Machine Learning Methods [J]. Smart Agriculture, 2023, 5(2): 82-92. |
| [12] | FAN Chengzhi, WANG Ziwen, YANG Xingchao, LUO Yongkai, XU Xuexin, GUO Bin, LI Zhenhai. Machine Learning Inversion Model of Soil Salinity in the Yellow River Delta Based on Field Hyperspectral and UAV Multispectral Data [J]. Smart Agriculture, 2022, 4(4): 61-73. |
| [13] | FU Hongyu, WANG Wei, LIAO Ao, YUE Yunkai, XU Mingzhi, WANG Ziwei, CHEN Jianfu, SHE Wei, CUI Guoxian. High Quality Ramie Resource Screening Based on UAV Remote Sensing Phenotype Monitoring [J]. Smart Agriculture, 2022, 4(4): 74-83. |
| [14] | DAI Shengpei, LUO Hongxia, ZHENG Qian, HU Yingying, LI Hailiang, LI Maofen, YU Xuan, CHEN Bangqian. Comparison of Remote Sensing Estimation Models for Leaf Area Index of Rubber Plantation in Hainan Island [J]. Smart Agriculture, 2021, 3(2): 45-54. |
| [15] | FLORES Paulo, ZHANG Zhao. Wheat Lodging Ratio Detection Based on UAS Imagery Coupled with Different Machine Learning and Deep Learning Algorithms [J]. Smart Agriculture, 2021, 3(2): 23-34. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||