Smart Agriculture ›› 2022, Vol. 4 ›› Issue (2): 121-134.doi: 10.12133/j.smartag.SA202201013
• Overview Article • Previous Articles Next Articles
GAO Zhen1,2(), ZHAO Chunjiang1,2, YANG Guiyan2, DONG Daming2(
)
Received:
2021-08-25
Online:
2022-06-30
Foundation items:
About author:
GAO Zhen, E-mail:z@cau.edu.cn
corresponding author:
DONG Daming, E-mail:dongdm@nercita.org.cn
CLC Number:
GAO Zhen, ZHAO Chunjiang, YANG Guiyan, DONG Daming. Typical Raman Spectroscopy Ttechnology and Research Progress in Agriculture Detection[J]. Smart Agriculture, 2022, 4(2): 121-134.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202201013
Table 1
Advantages and disadvantages of different Raman spectroscopy techniques
拉曼技术类别 | 优点 | 缺点 |
---|---|---|
共聚焦显微拉曼光谱 | 可成像分析,高空间分辨率 | 可见光波段有荧光背景,体积大 |
傅里叶变换拉曼光谱 | 减少荧光干扰,提高信号强度 | 温度漂移 |
移频激发拉曼差分光谱 | 无荧光干扰 | 需双激光激发 |
空间位移拉曼光谱 | 可无损伤测量样品内部化学信息 | 需激发光和采集光偏移的光路系统 |
表面增强拉曼光谱 | 高灵敏度,低检测限 | 定量性和稳定性差 |
共振拉曼光谱 | 高灵敏度 | 荧光干扰 |
针尖增强拉曼光谱 | 高灵敏度,纳米级空间分辨率,低检测限 | 稳定性差 |
受激拉曼光谱 | 提高信噪比和信号强度,成像速度快 | 技术复杂 |
相干反斯托克斯拉曼光谱 | 高灵敏度 | 技术复杂 |
1 | 赵春江. 智慧农业发展现状及战略目标研究[J]. 智慧农业(中英文), 2019, 1(1): 1-7. |
ZHAO C. State-of-the-art and recommended developmental strategic objectivs of smart agriculture[J]. Smart Agriculture, 2019, 1(1): 1-7. | |
2 | RAMAN C V. A new radiation[J]. Indian Journal of physics, 1928, 2: 387-398. |
3 | GRAVES P, GARDINER D. Practical Raman spectroscopy[M]. Heidelberg: Springer Berlin, 1989. |
4 | SMEKAL A. Zur quantentheorie der dispersion[J]. Naturwissenschaften, 1923, 11(43): 873-875. |
5 | RAMAN C V, KRISHNAN K S. A new type of secondary radiation[J]. Nature, 1928, 121(3048): 501-502. |
6 | PUPPELS G J, DE MUL F F M, OTTO C, et al. Studying single living cells and chromosomes by confocal Raman microspectroscopy[J]. Nature, 1990, 347(6290): 301-303. |
7 | LEW T T S, SAROJAM R, JANG I C, et al. Species-independent analytical tools for next-generation agriculture[J]. Nature Plants, 2020, 6(12): 1408-1417. |
8 | CHASE D B. Fourier transform Raman spectroscopy[J]. Journal of the American Chemical Society, 1986, 108(24): 7485-7488. |
9 | OZAKI Y, CHO R, IKEGAYA K, et al. Potential of near-infrared Fourier transform Raman spectroscopy in food analysis[J]. Applied Spectroscopy, 1992, 46(10): 1503-1507. |
10 | CHASE B. Fourier transform Raman spectroscopy[J]. Analytical Chemistry, 1987, 59(14): 881A-890A. |
11 | DZSABER S, NEGYEDI M, BERNÁTH B, et al. A Fourier transform Raman spectrometer with visible laser excitation[J]. Journal of Raman Spectroscopy, 2015, 46(3): 327-332. |
12 | FLEISCHMANN M, HENDRA P J, MCQUILLAN A J. Raman spectra of pyridine adsorbed at a silver electrode[J]. Chemical Physics Letters, 1974, 26(2): 163-166. |
13 | BAN R, YU Y, ZHANG M, et al. Synergetic SERS enhancement in a metal-like/metal double-shell structure for sensitive and stable application[J]. ACS Applied Materials & Interfaces, 2017, 9(15): 13564-13570. |
14 | WENG S, HU X, WANG J, et al. Advanced application of Raman spectroscopy and surface-enhanced Raman spectroscopy in plant disease diagnostics: A review[J]. Journal of Agricultural and Food Chemistry, 2021, 69(10): 2950-2964. |
15 | DAS R S, AGRAWAL Y K. Raman spectroscopy: Recent advancements, techniques and applications[J]. Vibrational Spectroscopy, 2011, 57(2): 163-176. |
16 | BAILO E, DECKERT V. Tip-enhanced Raman scattering[J]. Chemical Society Reviews, 2008, 37(5): 921-930. |
17 | HE Z, QIU W, KIZER M E, et al. Resolving the sequence of RNA strands by Tip-Enhanced Raman Spectroscopy[J]. ACS Photonics, 2020, 8(2): 424-430. |
18 | SACCO A, MANGINO S, PORTESI C, et al. Novel approaches in tip-enhanced Raman spectroscopy: Accurate measurement of enhancement factors and pesticide detection in tip dimer configuration[J]. The Journal of Physical Chemistry C, 2019, 123(40): 24723-24730. |
19 | NEUGEBAUER U, RÖSCH P, SCHMITT M, et al. On the way to nanometer-sized information of the bacterial surface by tip-enhanced Raman spectroscopy[J]. ChemPhysChem, 2006, 7(7): 1428-1430. |
20 | CIALLA D, DECKERT‐GAUDIG T, BUDICH C, et al. Raman to the limit: Tip-enhanced Raman spectroscopic investigations of a single tobacco mosaic virus[J]. Journal of Raman Spectroscopy, 2009, 40(3): 240-243. |
21 | DAS R S, AGRAWAL Y K. Raman spectroscopy: Recent advancements, techniques and applications[J]. Vibrational Spectroscopy, 2011, 57(2): 163-176. |
22 | STROMMEN D P, NAKAMOTO K. Resonance Raman spectroscopy[J]. Journal of Chemical Education, 1977, 54(8): 474. |
23 | ROBERT B. Resonance Raman spectroscopy[J]. Photosynthesis Research, 2009, 101(2): 147-155. |
24 | LU L, SHI L, SECOR J, et al. Resonance Raman scattering of β-carotene solution excited by visible laser beams into second singlet state[J]. Journal of Photochemistry and Photobiology B: Biology, 2018, 179: 18-22. |
25 | MERLIN J C. Resonance Raman spectroscopy of carotenoids and carotenoid-containing systems[J]. Pure and Applied Chemistry, 1985, 57(5): 785-792. |
26 | AFSETH N K, BLOOMFIELD M, WOLD J P, et al. A novel approach for subsurface through-skin analysis of salmon using spatially offset Raman spectroscopy (SORS)[J]. Applied Spectroscopy, 2014, 68(2): 255-262. |
27 | MOREY R, ERMOLENKOV A, PAYNE W Z, et al. Non-invasive identification of potato varieties and prediction of the origin of tuber cultivation using spatially offset Raman spectroscopy[J]. Analytical and Bioanalytical Chemistry, 2020, 412(19): 4585-4594. |
28 | MOSCA S, CONTI C, STONE N, et al. Spatially offset Raman spectroscopy[J]. Nature Reviews Methods Primers, 2021, 1(1): 1-16. |
29 | MOSIER-BOSS P A, LIEBERMAN S H, NEWBERY R. Fluorescence rejection in Raman spectroscopy by shifted-spectra, edge detection, and FFT filtering techniques[J]. Applied Spectroscopy, 1995, 49(5): 630-638. |
30 | SOWOIDNICH K, VOGEL S, MAIWALD M, et al. Determination of soil constituents using shifted excitation Raman difference spectroscopy[J]. Applied Spectroscopy, 2022, 76(6): 712-722. |
31 | TOLLES W M, NIBLER J W, MCDONALD J R, et al. A review of the theory and application of coherent anti-Stokes Raman spectroscopy (CARS)[J]. Applied Spectroscopy, 1977, 31(4): 253-271. |
32 | FREUDIGER C W, MIN W, SAAR B G, et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy[J]. Science, 2008, 322(5909): 1857-1861. |
33 | LITTLEJOHN G R, MANSFIELD J C, PARKER D, et al. In vivo chemical and structural analysis of plant cuticular waxes using stimulated Raman scattering microscopy[J]. Plant physiology, 2015, 168(1): 18-28. |
34 | ZENG Y, SAAR B G, FRIEDRICH M G, et al. Imaging lignin-downregulated alfalfa using coherent anti-Stokes Raman scattering microscopy[J]. BioEnergy Research, 2010, 3(3): 272-277. |
35 | KHODABAKHSHIAN R, ABBASPOUR-FARD M H. Pattern recognition-based Raman spectroscopy for non-destructive detection of pomegranates during maturity[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 231: ID 118127. |
36 | QIN J, CHAO K, KIM M S. Nondestructive evaluation of internal maturity of tomatoes using spatially offset Raman spectroscopy[J]. Postharvest Biology and Technology, 2012, 71: 21-31. |
37 | MOREY R, ERMOLENKOV A, PAYNE W Z, et al. Non-invasive identification of potato varieties and prediction of the origin of tuber cultivation using spatially offset Raman spectroscopy[J]. Analytical and Bioanalytical Chemistry, 2020, 412: 4585-4594. |
38 | FARBER C, SANCHEZ L, RIZEVSKY S, et al. Raman spectroscopy enables non-invasive identification of peanut genotypes and value-added traits[J]. Scientific reports, 2020, 10(1): 1-10. |
39 | JENTZSCH P V, CIOBOTA V, SALINAS W, et al. Distinction of Ecuadorian varieties of fermented cocoa beans using Raman spectroscopy[J]. Food Chemistry, 2016, 211: 274-280. |
40 | KRIMMER M, FARBER C, KUROUSKI D. Rapid and noninvasive typing and assessment of nutrient content of maize kernels using a handheld Raman spectrometer[J]. ACS Omega, 2019, 4(15): 16330-16335. |
41 | 张燕燕, 李灿, 苏睿, 等. 利用表面增强拉曼光谱定量检测植物激素脱落酸[J]. 智慧农业(中英文), 2022, 4(1): 121. |
ZHANG Y, LI C, SU R, et al. Quantitative determination of plant hormone abscisic acid using surface enhanced Raman spectroscopy[J]. Smart Agriculture, 2022, 4(1): 121-129. | |
42 | SCHULZ H, BARANSKA M, BARANSKI R. Potential of NIR-FT-Raman spectroscopy in natural carotenoid analysis[J]. Biopolymers: Original Research on Biomolecules, 2005, 77(4): 212-221. |
43 | MU T, WANG S, LI T, et al. Detection of pesticide residues using Nano-SERS chip and a smartphone-based Raman sensor[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 25(2): 1-6. |
44 | FISCHER S, SCHENZEL K, FISCHER K, et al. Applications of FT Raman spectroscopy and micro spectroscopy characterizing cellulose and cellulosic biomaterials[C]// Macromolecular Symposia. Weinheim: WILEY‐VCH Verlag, 2005, 223(1): 41-56. |
45 | BARSBERG S, MATOUSEK P, TOWRIE M. Structural analysis of lignin by resonance Raman spectroscopy[J]. Macromolecular Bioscience, 2005, 5(8): 743-752. |
46 | OLIVEIRA D M, MOTA T R, GRANDIS A, et al. Lignin plays a key role in determining biomass recalcitrance in forage grasses[J]. Renewable Energy, 2020, 147: 2206-2217. |
47 | HUANG C, SINGH G P, PARK S H, et al. Early diagnosis and management of nitrogen deficiency in plants utilizing Raman spectroscopy[J]. Frontiers in Plant Science, 2020, 11: ID 663. |
48 | SANCHEZ L, ERMOLENKOV A, BISWAS S, et al. Raman spectroscopy enables non-invasive and confirmatory diagnostics of salinity stresses, nitrogen, phosphorus, and potassium deficiencies in rice[J]. Frontiers in Plant Science, 2020, 11: ID 1620. |
49 | GUPTA S, HUANG C H, SINGH G P, et al. Portable Raman leaf-clip sensor for rapid detection of plant stress[J]. Scientific Reports, 2020, 10(1): 1-10. |
50 | ZHAO X, CAI L. Early detection of zinc deficit with confocal Raman spectroscopy[J]. Journal of Raman Spectroscopy, 2018, 49(10): 1706-1712. |
51 | SANCHEZ L, FARBER C, LEI J, et al. Noninvasive and nondestructive detection of cowpea bruchid within cowpea seeds with a hand-held Raman spectrometer[J]. Analytical Chemistry, 2019, 91(3): 1733-1737. |
52 | SANCHEZ L, ERMOLENKOV A, TANG X, et al. Non-invasive diagnostics of Liberibacter disease on tomatoes using a hand-held Raman spectrometer[J]. Planta, 2020, 251(3): 1-6. |
53 | SANCHEZ L, PANT S, MANDADI K, et al. Raman spectroscopy vs quantitative polymerase chain reaction in early stage Huanglongbing diagnostics[J]. Scientific Reports, 2020, 10(1): 1-10. |
54 | LIN Y, LIN H, LIN Y. Construction of Raman spectroscopic fingerprints for the detection of Fusarium wilt of banana in Taiwan[J]. PloS One, 2020, 15(3): ID e0230330 |
55 | 代芬, 邱泽源, 邱倩, 等. 基于拉曼光谱和自荧光光谱的柑橘黄龙病快速检测方法[J]. 智慧农业, 2019, 1(3): 77-86. |
DAI F, QIU Z, QIU Q, et al. Rapid detection of citrus Huanglongbing using Raman spectroscopy and Auto-fluorescence spectroscopy[J]. Smart Agriculture, 2019, 1(3): 77-86. | |
56 | TIMCHENKO E V, TIMCHENKO P E, ZHERDEVA L A, et al. Raman spectroscopy for the control of soil contamination by copper ions[C]// Journal of Physics: Conference Series. Samara, Russia, IOP Publishing, 2015, 643(1): ID 012032. |
57 | ZHANG C, ZHU J, LI J, et al. Small and sharp triangular silver nanoplates synthesized utilizing tiny triangular nuclei and their excellent SERS activity for selective detection of thiram residue in soil[J]. ACS Applied Materials & Interfaces, 2017, 9(20): 17387-17398. |
58 | LIN X, LIN S, LIU Y, et al. Lab-on-paper surface-enhanced Raman spectroscopy platform based on self-assembled Au@ Ag nanocube monolayer for on-site detection of thiram in soil[J]. Journal of Raman Spectroscopy, 2019, 50(7): 916-925. |
59 | NIE P, DONG T, XIAO S, et al. Quantitative determination of thiabendazole in soil extracts by surface-enhanced Raman spectroscopy[J]. Molecules, 2018, 23(8): ID 1949. |
60 | RUBIRA R J G, CAMACHO S A, CONSTANTINO C J L, et al. Increasing the sensitivity of surface‐enhanced Raman scattering detection for s‐triazine pesticides by taking advantage of interactions with soil humic substances[J]. Journal of Raman Spectroscopy, 2022, 53(1): 40-48. |
61 | LI H, BI Q, YANG K, et al. D2O-isotope-labeling approach to probing phosphate-solubilizing bacteria in complex soil communities by single-cell Raman spectroscopy[J]. Analytical Chemistry, 2019, 91(3): 2239-2246. |
62 | SCHWARZ M, KLOß S, STÖCKEL S, et al. Pioneering particle-based strategy for isolating viable bacteria from multipart soil samples compatible with Raman spectroscopy[J]. Analytical and Bioanalytical Chemistry, 2017, 409(15): 3779-3788. |
63 | DONG T, XIAO S, HE Y, et al. Rapid and quantitative determination of soil water-soluble nitrogen based on surface-enhanced Raman spectroscopy analysis[J]. Applied Sciences, 2018, 8(5): ID 701. |
64 | VOGEL C, ADAM C, MCNAUGHTON D. Determination of phosphate phases in sewage sludge ash-based fertilizers by Raman microspectroscopy[J]. Applied Spectroscopy, 2013, 67(9): 1101-1105. |
65 | VOGEL C, RIVARD C, TANABE I, et al. Microspectroscopy–promising techniques to characterize phosphorus in soil[J]. Communications in Soil Science and Plant Analysis, 2016, 47(18): 2088-2102. |
66 | LIU Y, SHI Y, CAI L, et al. Determination of copper, zinc, cadmium and lead in water using co-precipitation method and Raman spectroscopy[J]. Journal of Innovative Optical Health Sciences, 2013, 6(3): ID 1350021. |
67 | HU Y, LIAO J, WANG D, et al. Fabrication of gold nanoparticle-embedded metal-organic framework for highly sensitive surface-enhanced Raman scattering detection[J]. Analytical chemistry, 2014, 86(8): 3955-3963. |
68 | MARIÑO-LOPEZ A, SOUSA-CASTILLO A, BLANCO-FORMOSO M, et al. Microporous plasmonic capsules as stable molecular sieves for direct SERS quantification of small pollutants in natural waters[J]. ChemNanoMat, 2019, 5(1): 46-50. |
69 | ESCORIZA M F, VANBRIESEN J M, STEWART S, et al. Raman spectroscopy and chemical imaging for quantification of filtered waterborne bacteria[J]. Journal of Microbiological Methods, 2006, 66(1): 63-72. |
70 | YANG C, SHI X, YUAN J. Study on the application of Raman spectroscopy on detecting water hardness[J]. Water Environment Research, 2014, 86(5): 417-420. |
71 | LI Z, WANG J, LI D. Applications of Raman spectroscopy in detection of water quality[J]. Applied Spectroscopy Reviews, 2016, 51(4): 333-357. |
72 | LI Z, DEEN M J, KUMAR S, et al. Raman spectroscopy for in-line water quality monitoring—Instrumentation and potential[J]. Sensors, 2014, 14(9): 17275-17303. |
73 | REN X, LING W, TIAN Z, et al. Study on practical Raman Lidar seawater temperature remote sensing system[J]. Spectroscopy and Spectral Analysis, 39(3): ID 778. |
74 | LEONARD D A, CAPUTO B, GUAGLIARDO J L, et al. Remote sensing of subsurface water temperature by laser Raman spectroscopy[C]// Proceedings Volume 0208, Ocean Optics VI. Monterey, United States, Society of Photo-Optical Instrumentation Engineers (SPIE). 1980, 208: 198-205. |
75 | KONG L, HUANG M, CHEN J, et al. In situ detection of thiram in fruits and vegetables by colorimetry/surface-enhanced Raman spectroscopy[J]. Laser Physics, 2020, 30(6): ID 065602. |
76 | HU B, SUN D W, PU H, et al. Rapid nondestructive detection of mixed pesticides residues on fruit surface using SERS combined with self-modeling mixture analysis method[J]. Talanta, 2020, 217: ID 120998. |
77 | DHAKAL S, PENG Y, LI Y, et al. Rapid detection of chlorpyrifos pesticide residue concentration in agro-product using Raman spectroscopy[C]// Sensing for Agriculture and Food Quality and Safety VI. Baltimore, United States, Society of Photo-Optical Instrumentation Engineers (SPIE), 2014. |
78 | 张莎, 刘木华, 陈金印, 等. 采用表面增强拉曼光谱技术快速检测脐橙果皮中抑霉唑残留[J]. 智慧农业(中英文), 2021, 3(4): 42-52. |
ZHANG S, LIU M, CHEN J, et al. Rapid detection of Imazalil residues in navel orange peel using surface-enhanced Raman spectroscopy[J]. Smart Agriculture, 2021, 3(4): 42-52. | |
79 | TSAGKARIS A S, PULKRABOVA J, HAJSLOVA J. Optical screening methods for pesticide residue detection in food matrices: Advances and emerging analytical trends[J]. Foods, 2021, 10(1): ID 88. |
80 | ZHAO J, LIU P, YUAN H, et al. Rapid detection of tetracycline residues in duck meat using surface enhanced Raman spectroscopy[J]. Journal of Spectroscopy, 2016: ID 1845237. |
81 | GIRMATSION M, MAHMUD A, ABRAHA B, et al. Rapid detection of antibiotic residues in animal products using surface-enhanced Raman Spectroscopy: A review[J]. Food Control, 2021, 126: ID 108019. |
82 | JOSHI R, LOHUMI S, JOSHI R, et al. Raman spectral analysis for non-invasive detection of external and internal parameters of fake eggs[J]. Sensors and Actuators B: Chemical, 2020, 303: 127243. |
83 | OROIAN M, ROPCIUC S, PADURET S. Honey adulteration detection using Raman spectroscopy[J]. Food analytical methods, 2018, 11(4): 959-968. |
84 | XU Y, ZHONG P, JIANG A, et al. Raman spectroscopy coupled with chemometrics for food authentication: A review[J]. TrAC Trends in Analytical Chemistry, 2020: ID 116017. |
85 | AHMAD N, SALEEM M, AHMED M, et al. Heating effects of desi ghee using Raman spectroscopy[J]. Applied Spectroscopy, 2018, 72(6): 833-846. |
86 | VELIOĞLU H M, TEMIZ H T, BOYACI I H. Differentiation of fresh and frozen-thawed fish samples using Raman spectroscopy coupled with chemometric analysis[J]. Food Chemistry, 2015, 172: 283-290. |
87 | FOWLER S M, SCHMIDT H, VAN DE VEN R, et al. Predicting tenderness of fresh ovine semimembranosus using Raman spectroscopy[J]. Meat Science, 2014, 97(4): 597-601. |
88 | KIZIL R, IRUDAYARAJ J. Discrimination of irradiated starch gels using FT-Raman spectroscopy and chemometrics[J]. Journal of Agricultural and Food Chemistry, 2006, 54(1): 13-18. |
89 | THEURER L S, MAIWALD M, SUMPF B. Shifted excitation Raman difference spectroscopy: A promising tool for the investigation of soil[J]. European Journal of Soil Science, 2021, 72(1): 120-124. |
90 | ZHANG Z, CHEN S, LIANG Y. Baseline correction using adaptive iteratively reweighted penalized least squares[J]. Analyst, 2010, 135(5): 1138-1146. |
91 | CHEN N, XIAO T H, LUO Z, et al. Porous carbon nanowire array for surface-enhanced Raman spectroscopy[J]. Nature Communications, 2020, 11(1): 1-8. |
92 | CHEN F, CHEN C, CHEN C, et al. Application of PLSR in rapid detection of glucose in sheep serum[J]. Optik, 2020, 224: ID 165734. |
[1] | BAI Geng, GE Yufeng. Crop Stress Sensing and Plant Phenotyping Systems: A Review [J]. Smart Agriculture, 2023, 5(1): 66-81. |
[2] | ZHANG Yanyan, LI Can, SU Rui, LI Linze, WEI Wentao, LI Baolei, HU Jiandong. Quantitative Determination of Plant Hormone Abscisic Acid Using Surface Enhanced Raman Spectroscopy [J]. Smart Agriculture, 2022, 4(1): 121-129. |
[3] | GUO Zhiming, WANG Junyi, SONG Ye, ZOU Xiaobo, CAI Jianrong. Research Progress of Sensing Detection and Monitoring Technology for Fruit and Vegetable Quality Control [J]. Smart Agriculture, 2021, 3(4): 14-28. |
[4] | ZHANG Sha, LIU Muhua, CHEN Jinyin, ZHAO Jinhui. Rapid Detection of Imazalil Residues in Navel Orange Peel Using Surface-Enhanced Raman Spectroscopy [J]. Smart Agriculture, 2021, 3(4): 42-52. |
[5] | Liu Shouyang, Jin Shichao, Guo Qinghua, Zhu Yan, Baret Fred. An algorithm for estimating field wheat canopy light interception based on Digital Plant Phenotyping Platform [J]. Smart Agriculture, 2020, 2(1): 87-98. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||