1 | NGUYEN L T T, OSANAI Y, LAI K, et al. Responses of the soil microbial community to nitrogen fertilizer regimes and historical exposure to extreme weather events: Flooding or prolonged-drought[J]. Soil Biology and Biochemistry, 2018, 118: 227-236. | 2 | 刘美玲, 刘湘南, 曹仕, 等. 基于高光谱高频组份分形特征的水稻铅胁迫评估[J]. 遥感学报, 2011, 15(4): 811-830. | 2 | LIU M, LIU X, CAO S, et al. Assessment of Pb-induced stress levels on rice based on fractal characteristic of spectral high-frequency components[J]. Journal of Remote Sensing, 2011, 15(4): 811-830. | 3 | ZHANG B, LIU X, LIU M, et al. Thermal infrared imaging of the variability of canopy-air temperature difference distribution for heavy metal stress levels discrimination in rice[J]. Journal of Applied Remote Sensing, 2017, 11(2): ID 026036. | 4 | LI X, LI L, LIU X. Collaborative inversion heavy metal stress in rice by using two-dimensional spectral feature space based on HJ-1 A HSI and radarsat-2 SAR remote sensing data[J]. International Journal of Applied Earth Observation & Geoinformation, 2019, 78: 39-52. | 5 | 杨兴川, 罗红霞, 赵文吉, 等. 植被叶片光谱特征对烟煤病胁迫程度的响应模型研究[J]. 光谱学与光谱分析, 2017, 37(9): 2873-2878. | 5 | YANG X, LUO H, ZHAO W, et al. Study on the response model of spectral signatures of vegetation leaves on the stress level for sooty mould[J]. Spectroscopy and Spectral Analysis, 2017, 37(9): 2873-2878. | 6 | STEFAN T, JAN B, ANGELINA S, et al. Quantitative assessment of disease severity and rating of barley cultivars based on hyperspectral imaging in a non-invasive, automated phenotyping platform[J]. Plant Methods, 2018, 14(1): ID 45. | 7 | GUI J, FEI J, WU Z, et al. Grading method of soybean mosaic disease based on hyperspectral imaging technology[J/OL]. Information Processing in Agriculture, 2020. | 8 | 王慧芳, 王纪华, 董莹莹, 等. 冬小麦冻害胁迫高光谱分析与冻害严重度反演[J]. 光谱学与光谱分析, 2014, 34(5): 1357-1361. | 8 | WANG H, WANG J, DONG Y, et al. Monitoring freeze stress levels on winter wheat from hyperspectral reflectance data using principal component analysis[J]. Spectroscopy and Spectral Analysis, 2014, 34(5): 1357-1361. | 9 | LIANG L, XIANG L, QIN S, et al. Diagnosis the dust stress of wheat leaves with hyperspectral indices and random forest algorithm[C]// IEEE International Geoscience and Remote Sensing Symposium. Piscataway, New York, USA: IEEE, 2016. | 10 | ZHANG F, ZHOU G. Estimation of canopy water content by means of hyperspectral indices based on drought stress gradient experiments of maize in the north plain China[J]. Remote Sensing, 2015, 7(11): 15203-15223. | 11 | MIGUEL L, BELéN D, LOURDES L, et al. Hyperspectral imaging to evaluate the effect of irrigation water salinity in lettuce[J]. Applied Sciences, 2016, 6(12): ID 412. | 12 | 杨菲菲, 李世娟, 刘升平, 等. 作物环境胁迫高光谱遥感监测研究进展[J]. 中国农业科技导报, 2020, 22(4): 85-93. | 12 | YANG F, LI S, LIU S, et al. Research progress on hyperspectral remote sensing monitoring of crop environmental stress[J]. Journal of Agricultural Science and Technology, 2020, 22(4): 85-93. | 13 | 熊勤学, 王晓玲, 王有宁. 小麦渍害光谱特征分析[J]. 光谱学与光谱分析, 2016, 36(8): 2558-2561. | 13 | XIONG Q, WANG X, WANG Y. Spectral characteristics analysis of wheat damaged by subsurface waterlogging[J]. Spectroscopy and Spectral Analysis, 2016, 36(8): 2558-2561. | 14 | XIA J, CAO H, YANG Y, et al. Detection of waterlogging stress based on hyperspectral images of oilseed rape leaves (Brassica napus L.)[J]. Computers and Electronics in Agriculture, 2019, 159: 59-68. | 15 | ZHAO J, PAN F, LI Z, et al. Detection of cotton waterlogging stress based on hyperspectral images and convolutional neural network[J]. International Journal of Agricultural and Biological Engineering, 2021, 14(2): 167-174. | 16 | 高小梅, 李燕丽, 卢碧林, 等. 基于高光谱和数字图像特征指数的受渍冬小麦SPAD估算[J]. 应用生态学报, 2021, 32(3): 959-966. | 16 | GAO X, LI Y, LU B, et al. Estimation of SPAD value in waterlogged winter wheat based on characteristic indices of hyperspectral and digital image[J]. Chinese Journal of Applied Ecology, 2021, 32(3): 959-966. | 17 | EMENGINI E, BLACKBURN A, THEOBALD J. Discrimination of plant stress caused by oil pollution and waterlogging using hyperspectral and thermal remote sensing[J]. Journal of Applied Remote Sensing, 2013, 7(4): 87-97. | 18 | 郭辉, 杨可明, 张文文, 等. 铜铅离子胁迫下玉米污染程度的光谱识别[J]. 光谱学与光谱分析, 2018, 38(1): 212-217. | 18 | GUO H, YANG K, ZHANG W, et al. Spectra recognition of corn pollution degree under copper and lead ion stress[J]. Spectroscopy and Spectral Analysis, 2018, 38(1): 212-217. | 19 | 蒋金豹, STEVEN D M, 何汝艳, 等. 水浸胁迫下植被高光谱遥感识别模型对比分析[J]. 光谱学与光谱分析, 2013, 33(11): 3106-3110. | 19 | JIANG J, STEVEN D M, HE R, et al. Comparison and analysis of hyperspectral remote sensing identifiable models for different vegetation under waterlogging stress[J]. Spectroscopy and Spectral Analysis, 2013, 33(11): 3106-3110. | 20 | SCHELL J A. Monitoring vegetation systems in the great plains with ERTS[J]. Nasa Special Publication, 1973, 351: 309. | 21 | 黄文江, 王纪华, 刘良云, 等. 冬小麦品质的影响因素及高光谱遥感监测方法[J]. 遥感技术与应用, 2004(3): 143-148. | 21 | HUANG W, WANG J, LIU L, et al. Study on grain quality effecting factors and monitoring methods by using hyperspectral data in winter wheat[J]. Remote Sensing Technology and Application, 2004(3): 143-148. | 22 | MCFEETERS S. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 1996, 17(7): 1425-1432. | 23 | BARET F, GUYOT G. Potentials and limits of vegetation indices for LAI and APAR assessment[J]. Remote Sensing of Environment, 1991, 35(2-3): 161-173. | 24 | GAMON J, PE?UELAS J, FIELD C. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency[J]. Remote Sensing of Environment, 1992, 41(1): 35-44. | 25 | 王仁红, 宋晓宇, 李振海, 等. 基于高光谱的冬小麦氮素营养指数估测[J]. 农业工程学报, 2014, 30(19): 191-198. | 25 | WANG R, SONG X, LI Z, et al. Estimation of winter wheat nitrogen nutrition index using hyperspectral remote sensing[J]. Transactions of the CSAE, 2014, 30(19): 191-198. | 26 | LU J, LIU F, LUO X. Selection of image features for steganalysis based on the Fisher criterion[J]. Digital Investigation, 2014, 11(1): 57-66. | 27 | 王文全. 距离度量学习: 算法与应用[D]. 上海: 上海交通大学, 2018. | 27 | WANG W. Distance metric learning:Algorithm and application[D]. Shanghai: Shanghai Jiao Tong University, 2018. | 28 | 童庆禧, 张兵, 郑兰芬. 高光谱遥感-原理、技术与应用[M]. 北京: 高等教育出版社, 2006. | 28 | TONG Q, ZHANG B, ZHENG L. Hyperspectral remote sensing: Principles, techniques, and applications[M]. Beijing: Higher Education Press, 2006. | 29 | SHANNON C. The bell system technical journal[J]. Journal of the Franklin Institute, 1938, 196(4): 519-520. | 30 | 郭辉. 铜胁迫下玉米叶片污染弱信息提取与反演模型研究[D]. 北京: 中国矿业大学(北京), 2019. | 30 | GUO H. Study on extraction and inversion models of weak information in maize leaf polluted under copper stress[D]. Beijing: China University of Mining & Technology (Beijing), 2019. | 31 | RAMOELO A, SKIDMORE A, CHO M, et al. Regional estimation of savanna grass nitrogen using the red-edge band of the spaceborne RapidEye sensor[J]. International Journal of Applied Earth Observations & Geoinformation, 2012, 19: 151-162. | 32 | RAMOELO A, DZIKITI S, VAN D, et al. Potential to monitor plant stress using remote sensing tools[J]. Journal of Arid Environments, 2015, 113: 134-144. | 33 | LIU L, HUANG W, PU R, et al. Detection of internal leaf structure deterioration using a new spectral ratio index in the near-infrared shoulder region[J]. Journal of Integrative Agriculture, 2014, 13(4): 760-769. | 34 | SUáREZ L, ZARCO-TEJADA P, GONZáLEZ-DUGO V, et al. Detecting water stress effects on fruit quality in orchards with time-series PRI airborne imagery[J]. Remote Sensing of Environment, 2010, 114(2) : 286-298. | 35 | CALDERóN R, NAVAS-CORTéS J, LUCENA C, et al. High-resolution airborne hyperspectral and thermal imagery for early detection of verticillium wilt of olive using fluorescence, temperature and narrow-band spectral indices[J]. Remote Sensing of Environment, 2013, 139: 231-245. | 36 | 张玮, 王鑫梅, 潘庆梅, 等. 干旱胁迫下雷竹叶片叶绿素的高光谱响应特征及含量估算[J]. 生态学报, 2018, 38(18): 322-329. | 36 | ZHANG W, WANG X, PAN Q, et al. Hyperspectral response characteristics and chlorophyll content estimation of phyllostachys violascens leaves under drought stress[J]. Acta Ecologica Sinica, 2018, 38(18): 322-329. | 37 | 付彦博, 范燕敏, 盛建东, 等. 紫花苜蓿冠层反射光谱与叶片含水率关系研究[J]. 光谱学与光谱分析, 2013, 33(3): 766-769. | 37 | FU Y, FAN Y, SHENG J, et al. Study on relationship between alfalfa canopy spectral reflectance and leaf water content[J]. Spectroscopy and Spectral Analysis, 2013, 33(3): 766-769. |
|