1 | 常俊彦, 宋明阳, 于晓曼, 等. 沈阳地区水稻生产的生态环境影响研究[J]. 农业环境科学学报, 2018, 37(8): 249-257. | 1 | Chang J, Song M, Yu X, et al. Study on the ecological environment impact of rice production in shenyang area[J]. Journal of Agro-Environment Science, 2018, 37 (8): 249-257. | 2 | 凌启鸿, 王绍华, 丁艳锋, 等. 关于用水稻“顶3顶4叶叶色差”作为高产群体叶色诊断统一指标的再论证[J]. 中国农业科学, 2017, 50(24): 42-50. | 2 | Ling Q, Wang S, Ding Y, et al. Further demonstration of using rice "top 3 top 4 leaf color difference" as a unified indicator for leaf color diagnosis in high-yielding populations[J]. Scientia Agricultura Sinica, 2017, 50 (24): 42-50. | 3 | 裴信彪, 吴和龙, 马萍, 等. 基于无人机遥感的不同施氮水稻光谱与植被指数分析[J]. 中国光学, 2018, 11(5): 144-152. | 3 | Pei X, Wu H, Ma P, et al. Analysis of spectrum and vegetation index of different nitrogen-applied rice based on UAV remote sensing[J]. China Optics, 2018, 11 (5): 144-152. | 4 | 何勇, 彭继宇, 刘飞, 等. 基于光谱和成像技术的作物养分生理信息快速检测研究进展[J]. 农业工程学报, 2015, 31(3): 182-197. | 4 | He Y, Peng J, Liu F, et al. Critical review of fast detection of crop nutrient nd physiological information ith spectral and imaging technology[J]. Transactions of the CASE, 2015, 31 (3): 182-197. | 5 | Arnal B J G. Detection of nutrition deficiencies in plants using proximal images and machine learning: a review[J]. Computers and Electronics in Agriculture, 2019, 162: 482-492. | 6 | Baek I, Kim M, Cho B K, et al. Selection of optimal hyperspectral wavebands for detection of discolored, diseased rice seeds[J]. Applied Sciences, 2019, 9(5): 1027-1038. | 7 | 谢立勇, 孙雪, 赵洪亮, 等. FACE条件下水稻生育后期剑叶光合色素含量及产量构成的响应研究[J]. 中国生态农业学报, 2015, 23(4): 47-53. | 7 | Xie L, Sun X, Zhao H, et al. Response of photosynthetic pigment content and yield component of flag leaf in late growth stage of rice under FACE condition[J]. Chinese Journal of Eco-Agriculture, 2015, 23 (4): 47-53. | 8 | Yu F, Xu T, Du W, et al. Radiative transfer models (rtms) for field phenotyping inversion of rice based on uav hyperspectral remote sensing[J]. International Journal of Agricultural and Biological Engineering, 2017, 10(4): 150-157. | 9 | Henrich V, Brüser K. Index Database[EB/OL]. Germany: The Idb Project. (2012-01-01) [2019-01-01]. . | 10 | 刘桃菊, 胡雯君, 张笑东, 等. 水稻冠层高光谱特征变量与叶片叶绿素含量的相关性研究[J]. 激光生物学报, 2015, 24(5): 428-435. | 10 | Liu T, Hu W, Zhang X, et al. Correlation between rice canopy hyperspectral characteristic variables and chlorophyll content in leaves[J]. Laser Biology, 2015, 24 (5): 428- 435. | 11 | 曹英丽, 邹焕成, 郑伟, 等. 水稻叶片高光谱数据降维与叶绿素含量反演方法研究[J]. 沈阳农业大学学报, 2019, 50(1): 107-113. | 11 | Cao Y, Zou H, Zheng W, et al. Study on dimensionality reduction and chlorophyll content inversion of rice leaf hyperspectral data[J]. Journal of Shenyang Agricultural University, 2019, 50 (1): 107-113. | 12 | 谢凯, 蒋蘋, 罗亚辉. 稻瘟病胁迫下水稻叶片叶绿素含量与光谱特征参数的相关性研究[J]. 中国农学通报, 2017, 33(17): 123-128. | 12 | Xie K, Jiang P, Luo Y. Correlation between chlorophyll content and spectral characteristic parameters of rice leaves under rice blast stress[J]. Chinese Agricultural Science Bulletin, 2017, 33 (17): 123-128. | 13 | 张建, 孟晋, 赵必权, 等. 消费级近红外相机的水稻叶片叶绿素(SPAD)分布预测[J]. 光谱学与光谱分析, 2018, 38(3): 79-86. | 13 | Zhang J, Meng J, Zhao B, et al. Prediction of chlorophyll (SPAD) distribution in rice leaves from consumer-grade near-infrared cameras[J]. Spectroscopy and Spectral Analysis, 2018, 38 (3): 79-86. | 14 | Stavrakoudis D, Katsantonis D, Kadoglidou K, et al. Estimating rice agronomic traits using drone-collected multispectral imagery[J]. Remote Sens, 2019, 11(5): 545-560. | 15 | Golhani K, Balasundram S K, Vadamalai G, et al. Estimating chlorophyll content at leaf scale in viroid-inoculated oil palm seedlings (Elaeis guineensis jacq.) using reflectance spectra (400nm-1050nm)[J]. International Journal of Remote Sensing, 2019, 40(19): 7647-7662. | 16 | 李苑溪, 陈锡云, 罗达, 等. 铜胁迫下玉米叶片反射光谱的红边位置变化及其与叶绿素的关系[J]. 光谱学与光谱分析, 2018, 38(2): 220-225. | 16 | Li Y, Chen X, Luo D, et al. Red edge position change of corn leaf reflection spectrum under copper stress and its relationship with chlorophyll[J]. Spectroscopy and Spectral Analysis, 2018, 38 (2): 220-225. | 17 | 冯海宽, 杨福芹, 杨贵军, 等. 基于特征光谱参数的苹果叶片叶绿素含量估算[J]. 农业工程学报, 2018, 34(6): 190-196. | 17 | Feng H, Yang F, Yang G, et al. Estimation of chlorophyll content in apple leaves based on characteristic spectral parameters[J]. Transactions of the CASE, 2018, 34 (6): 190-196. | 18 | 兰玉彬, 邓小玲, 曾国亮. 无人机农业遥感在农作物病虫草害诊断应用研究进展[J]. 智慧农业, 2019, 1(2): 1-19. | 18 | Lan Y, Deng X, Zeng G. Research progress on UAV agricultural remote sensing in diagnosis of crop diseases, pests and weeds[J]. Smart Agriculture, 2019, 1 (2): 1-19. | 19 | 裴信彪, 吴和龙, 马萍, 等. 基于无人机遥感的不同施氮水稻光谱与植被指数分析[J]. 中国光学, 2018, 11(05): 144-152. | 19 | Pei X, Wu H, Ma P, et al. Analysis of spectral and vegetation index of different nitrogen-fed rice based on UAV remote sensing[J]. China Optics, 2018, 11 (05): 144-152. | 20 | Xu Q, Ma Y, Jiang Q, et al. Hyperspectral remote sensing estimation of water content in rice leaves[J]. Remote Sensing Information, 2018, 33 (05): 5-12. | 21 | 武旭梅, 常庆瑞, 落莉莉, 等. 水稻冠层叶绿素含量高光谱估算模型[J]. 干旱地区农业研究, 2019, 37(3): 238-243. | 21 | Wu X, Chang Q, Luo L, et al. Hyperspectral estimation model of rice canopy chlorophyll content[J]. Agricultural Research in the Arid Areas, 2019, 37(3): 238-243. | 22 | 曹英丽, 邹焕成, 郑伟, 等. 水稻叶片高光谱数据降维与叶绿素含量反演方法研究[J]. 沈阳农业大学学报, 2019, 50(01): 107-113. | 22 | Cao Y, Zou H, Zheng W, et al. Study on the method of dimension reduction and chlorophyll content inversion from hyperspectral data of rice leaves[J]. Journal of Shenyang Agricultural University, 2019, 50 (1): 107-113. | 23 | Gao Y, Wu G, Wang F, et al. Feasibility of estimating heavy metal concentrations in wetland soil using hyperspectral technology[C]// IGARSS 2017 - 2017 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2017. | 24 | 秦占飞, 常庆瑞, 申健, 等. 引黄灌区水稻红边特征及SPAD高光谱预测模型[J]. 武汉大学学报(信息科学版), 2016, (8): 1168-1175. | 24 | Qin Z, Chang Q, Shen J, et al. Red edge characteristics and SPAD hyperspectral prediction model of rice in the yellow river irrigation area[J]. Geomatics and Information Science of Wuhan University, 2016, (8): 1168-1175. | 25 | Raymond H E, Daughtry C S T, Eitel J U H, et al. Remote sensing leaf chlorophyll content using a visible band index[J]. Agronomy Journal, 2011, 103(4): no. 1090. | 26 | Xu Q, Ma Y, Jiang Q, et al. Hyperspectral remote sensing estimation of water content in rice leaves[J]. Remote Sensing Information, 2018, 33 (05): 5-12. | 27 | 王洋, 肖文, 邹焕成, 等. 基于PROSPECT模型的植物叶片干物质估测建模研究[J]. 沈阳农业大学学报, 2018, 49(1): 121-127. | 27 | Wang Y, Xiao W, Zou H, et al. Estimation and modeling of dry matter in plant leaves based on PROSPECT model[J]. Journal of Shenyang Agricultural University, 2018, 49(1): 121-127. | 28 | Sun D, Cen H, Weng H, et al. Using hyperspectral analysis as a potential high throughput phenotyping tool in GWAS for protein content of rice quality[J]. Plant Methods, 2019, 15(1): 156-163. | 29 | 刘明博, 唐延林, 李晓利, 等. 水稻叶片氮含量光谱监测中使用连续投影算法的可行性[J]. 红外与激光工程, 2014, 43(4): 1265-1271. | 29 | Liu M, Tang Y, Li X, et al. The feasibility of using continuous projection algorithm in the spectral monitoring of nitrogen content in rice leaves[J]. Infrared and Laser Engineering, 2014, 43(4): 1265-1271. | 30 | Guo L, Yu Y, Yu H, et al. Rapid quantitative analysis of adulterated rice with partial least squares regression using hyperspectral imaging system[J]. Journal of the Science of Food and Agriculture, 2019, 99(12): 175-189. | 31 | Yu F, Xu T, Du W, et al. Radiative transfer models (RTMs) for field phenotyping inversion of rice based on UAV hyperspectral remote sensing[J]. International Journal of Agricultural and Biological Engineering. 2017, 12 (13): 110-116. | 32 | Nguyen H T, Lee B W. Assessment of rice leaf growth and nitrogen status by hyperspectral canopy reflectance and partial least square regression[J]. European Journal of Agronomy, 2006, 24(4): 349-356. | 33 | 周扬帆, 陈佑启, 何英彬. 基于高光谱曲线的马铃薯与其他主要作物光谱差异性分析[J]. 中国农业资源与区划, 2017, 38(11): 10-16. | 33 | Zhou Y, Chen Y, He Y. Analysis of spectral difference between potato and other major crops based on hyperspectral curve[J]. China Agricultural Resources and Regional Planning, 2017, 38 (11): 10-16. | 34 | 陈桂芬, 赵姗, 曹丽英, 等. 基于迁移学习与卷积神经网络的玉米植株病害识别[J]. 智慧农业, 2019, 1(2): 34-44. | 34 | Chen G, Zhao S, Cao L, et al. Maize plant disease recognition based on transfer learning and convolutional neural network[J]. Smart Agriculture, 2019, 1 (2): 34-44. |
|