1 |
POTDAR R P, SHIROLKAR M M, VERMA A J, et al. Determination of soil nutrients (NPK) using optical methods: A mini review[J]. Journal of plant nutrition, 2021, 44(12): 1826-1839.
|
2 |
DELPHINE M, BARDGETT R D, FINLAY R D, et al. A plant perspective on nitrogen cycling in the rhizosphere[J]. Functional ecology, 2019, 33(4): 540-552.
|
3 |
陶曙华, 王洁敏, 苗雪雪, 等. 高氯酸-氢氟酸联合消解法测定土壤中全量氮磷钾[J].中国测试, 2022, 48(9): 78-83.
|
|
TAO S H, WANG J M, MIAO X X, et al. Determination the total amount of nitrogen, phosphorus and potassium in the soil by perchloric acid-hydrofluoric acid digesting system[J]. China measurement & test, 2022, 48(9): 78-83.
|
4 |
PAN X Y, LYU J L, DYCK M, et al. Bibliometric analysis of soil nutrient research between 1992 and 2020[J]. Agriculture, 2021, 11(3): ID 223.
|
5 |
CHEN Z H, DOLFING J, ZHUANG S Y, et al. Periphytic biofilms-mediated microbial interactions and their impact on the nitrogen cycle in rice paddies[J]. Eco-environment & health, 2022, 1(3): 172-180.
|
6 |
李学兰, 李德成, 郑光辉, 等. 可见-近红外与中红外光谱预测土壤养分的比较研究[J/OL]. 土壤学报. [2023-09-10].
|
|
LI X L, LI D C, ZHENG G H, et al. Comparative study on prediction of soil nutrients by visible-near infrared and mid-infrared spectroscopy[J/OL]. Acta pedologica sinica. [2023-09-10].
|
7 |
BRONDI A M, DANIEL J S P, DE CASTRO V X M, et al. Quantification of humic and fulvic acids, macro- and micronutrients and C/N ratio in organic fertilizers[J]. Communications in soil science and plant analysis, 2016, 47(22): 2506-2513.
|
8 |
刘雪梅. 近红外漫反射光谱检测土壤有机质和速效N的研究[J]. 中国农机化学报, 2013, 34(2): 202-206.
|
|
LIU X M. Near infrared diffuse reflectance spectra detection of soil organic matter and available N[J]. Journal of Chinese agricultural mechanization, 2013, 34(2): 202-206.
|
9 |
BARTHÈS B G, BRUNET D, HIEN E, et al. Determining the distributions of soil carbon and nitrogen in particle size fractions using near-infrared reflectance spectrum of bulk soil samples[J]. Soil biology and biochemistry, 2008, 40(6): 1533-1537.
|
10 |
BECHLIN M A, FORTUNATO F M, SILVA R MDA, et al. A simple and fast method for assessment of the nitrogen-phosphorus-potassium rating of fertilizers using high-resolution continuum source atomic and molecular absorption spectrometry[J]. Spectrochimica acta part B: Atomic spectroscopy, 2014, 101: 240-244.
|
11 |
WEI Y Y, WANG R J, ZHANG J Q, et al. Partition management of soil nutrients based on capacitive coupled contactless conductivity detection[J]. Agriculture, 2023, 13(2): ID 313.
|
12 |
张俊卿, 高钧, 陈翔宇,等. 土壤钾离子非接触电导检测装置设计与试验[J]. 农业机械学报, 2018, 49(S1): 360-364, 392.
|
|
ZHANG J Q, GAO J, CHEN X Y, et al. Design and experiment of capacitively-coupled contactless conductivity detection device for rapid measurement of soil potassium ion[J]. Transactions of the Chinese society for agricultural machinery, 2018, 49(S1): 360-364, 392.
|
13 |
PAUL P, SÄNGER-VAN DE GRIEND C, ADAMS E, et al. Recent advances in the capillary electrophoresis analysis of antibiotics with capacitively coupled contactless conductivity detection[J]. Journal of pharmaceutical and biomedical analysis, 2018, 158: 405-15.
|
14 |
TŮMA P. Determination of amino acids by capillary and microchip electrophoresis with contactless conductivity detection: Theory, instrumentation and applications[J]. Talanta, 2021, 224: ID 121922.
|
15 |
ZHANG J Q, WANG R J, JIN Z, et al. Development of on-site rapid detection device for soil macronutrients based on capillary electrophoresis and capacitively coupled contactless conductivity detection (C4D) method[J]. Chemosensors, 2022, 10(2): ID 84.
|
16 |
张俊卿, 陈翔宇, 王儒敬, 等. 用于水肥系统的养分离子快检装置研制与试验[J]. 农业工程学报, 2022, 38(2): 102-110.
|
|
ZHANG J Q, CHEN X Y, WANG R J, et al. Development and experiment of the rapid detection device of the nutrient ion concentrations for fertigation system[J]. Transactions of the Chinese society of agricultural engineering, 2022, 38(2): 102-110.
|
17 |
OU X W, CHEN P, HUANG X Z, et al. Microfluidic chip electrophoresis for biochemical analysis[J]. Journal of separation science, 2020, 43(1): 258-270.
|
18 |
RIBEIRO DA SILVA M, ZABOROWSKA I, CARILLO S, et al. A rapid, simple and sensitive microfluidic chip electrophoresis mass spectrometry method for monitoring amino acids in cell culture media[J]. Journal of chromatography A, 2021, 1651: ID 462336.
|
19 |
DE CASTRO COSTA B M, GRIVEAU S, D'ORLYE F, et al. Microchip electrophoresis and electrochemical detection: A review on a growing synergistic implementation[J]. Electrochimica acta, 2021, 391: ID 138928.
|
20 |
TŮMA P. Progress in on-line, at-line, and in-line coupling of sample treatment with capillary and microchip electrophoresis over the past 10 years: A review[J]. Analytica chimica acta, 2023, 1261: ID 341249.
|
21 |
CHONG K C, THANG L Y, QUIRINO J P, et al. Monitoring of vancomycin in human plasma via portable microchip electrophoresis with contactless conductivity detector and multi-stacking strategy[J]. Journal of chromatography A, 2017, 1485: 142-6.
|
22 |
TŮMA P. Monitoring of biologically active substances in clinical samples by capillary and microchip electrophoresis with contactless conductivity detection: A review[J]. Analytica chimica acta, 2022, 1225: ID 340161.
|
23 |
PINHEIRO K M P, DUARTE L M, RODRIGUES M F, et al. Determination of naphthenic acids in produced water by using microchip electrophoresis with integrated contactless conductivity detection[J]. Journal of chromatography A, 2022, 1677: ID 463307.
|
24 |
FREITAS C B, MOREIRA R C, DE OLIVEIRA TAVARES M G, et al. Monitoring of nitrite, nitrate, chloride and sulfate in environmental samples using electrophoresis microchips coupled with contactless conductivity detection[J]. Talanta, 2016, 147: 335-341.
|
25 |
PINHEIRO K M P, MOREIRA R C, REZENDE K C A, et al. Rapid separation of post-blast explosive residues on glass electrophoresis microchips[J]. Electrophoresis, 2019, 40(3): 462-468.
|
26 |
ALHAKIMI A, 陈缵光. 微流控芯片非接触电导法测定药品中的精氨酸布洛芬含量[J]. 分析测试学报, 2017, 36(9): 1129-1132.
|
|
ALHAKIMI A, CHEN Z G. Determination of ibuprofen arginine by contactless conductivity detection with microfluidic chip[J]. Journal of instrumental analysis, 2017, 36(9): 1129-1132.
|
27 |
SMOLKA M, PUCHBERGER-ENENGL D, BIPOUN M, et al. A mobile lab-on-a-chip device for on-site soil nutrient analysis[J]. Precision agriculture, 2017, 18(2): 152-168.
|
28 |
XU Z, WANG X R, WEBER R J, et al. Nutrient sensing using chip scale electrophoresis and in situ soil solution extraction[J]. IEEE sensors journal, 2017, 17(14): 4330-4339.
|
29 |
THREDGOLD L D, KHODAKOV D A, ELLIS A V, et al. Optimization of physical parameters of 'injected' metal electrodes for capacitively coupled contactless conductivity detection on poly (dimethylsiloxane) microchips[C]// Proc. SPIE 8923, Micro/Nano Materials, Devices, and Systems. Burlingame, California, USA: SPIE. 2013: ID 89234D.
|