| 1 | 
																						 
											 金欢庆, 热孜燕·瓦卡斯. 中国智慧农业发展现状及对策[J]. 农业展望, 2023, 19(11): 62-66. 
																						 | 
										
																													
																							 | 
																						 
											  JIN H Q,  REZIYAN WAKASI. Development status and countermeasures of intelligent agriculture in China[J]. Agricultural outlook, 2023, 19(11): 62-66. 
																						 | 
										
																													
																							| 2 | 
																						 
											 刘羽飞, 何勇, 刘飞, 等. 农业传感器技术在我国的应用和市场:现状与未来展望[J]. 浙江大学学报(农业与生命科学版), 2023, 49(3): 293-304. 
																						 | 
										
																													
																							 | 
																						 
											  LIU Y F,  HE Y,  LIU F, et al. Application and market of agricultural sensor technology in China: Current status and future perspectives[J]. Journal of Zhejiang university (agriculture and life sciences), 2023, 49(3): 293-304. 
																						 | 
										
																													
																							| 3 | 
																						 
											  MAHMOUDPOUR M,  TORBATI M,  MOUSAVI M M, et al. Nanomaterial-based molecularly imprinted polymers for pesticides detection: Recent trends and future prospects[J]. Trends in Analytical Chemistry, 2020, 129: ID 115943. 
																						 | 
										
																													
																							| 4 | 
																						 
											  MA P,  ZHU H R,  LU H, et al. Design of biodegradable wheat-straw based triboelectric nanogenerator as self-powered sensor for wind detection[J]. Nano energy, 2021, 86: ID 106032. 
																						 | 
										
																													
																							| 5 | 
																						 
											  DE LARA A,  LONGCHAMPS L,  KHOSLA R. Soil water content and high-resolution imagery for precision irrigation: Maize yield[J]. Agronomy, 2019, 9(4): 174. 
																						 | 
										
																													
																							| 6 | 
																						 
											  VISCARRA ROSSEL R A,  BOUMA J. Soil sensing: A new paradigm for agriculture[J]. Agricultural systems, 2016, 148: 71-74. 
																						 | 
										
																													
																							| 7 | 
																						 
											  YIN H,  CAO Y,  MARELLI B, et al. Soil sensors and plant wearables for smart and precision agriculture[J]. Advanced materials, 2021, 33(20): ID e2007764. 
																						 | 
										
																													
																							| 8 | 
																						 
											  YU L M,  GAO W L,  SHAMSHIRI R R, et al. Review of research progress on soil moisture sensor technology[J]. International journal of agricultural and biological engineering, 2021, 14(3): 32-42. 
																						 | 
										
																													
																							| 9 | 
																						 
											  XIAO D Q,  FENG J Z,  WANG N, et al. Integrated soil moisture and water depth sensor for paddy fields[J]. Computers and electronics in agriculture, 2013, 98: 214-221. 
																						 | 
										
																													
																							| 10 | 
																						 
											  HABIBULLAH B,  ALEXANDER S,  DIDIER B, et al. Soil moisture and density monitoring methodology using TDR measurements[J]. International journal of pavement engineering, 2020, 21(10): 1263-1274. 
																						 | 
										
																													
																							| 11 | 
																						 
											  VELLIDIS G,  TUCKER M,  PERRY C, et al. A real-time wireless smart sensor array for scheduling irrigation[J]. Computers and electronics in agriculture, 2008, 61(1): 44-50. 
																						 | 
										
																													
																							| 12 | 
																						 
											  XU Y,  DUAN J L,  JIANG R, et al. Study on the detection of soil water content based on the pulsed acoustic wave (PAW) method[J]. IEEE access, 2021, 9: 15731-15743. 
																						 | 
										
																													
																							| 13 | 
																						 
											  ZHENG X M,  FENG Z Z,  LI L, et al. Simultaneously estimating surface soil moisture and roughness of bare soils by combining optical and radar data[J]. International journal of applied earth observation and geoinformation, 2021, 100: ID 102345. 
																						 | 
										
																													
																							| 14 | 
																						 
											 宋豫晓, 王建, 乔晓军, 等. 多功能土壤温度测量仪的研发[J]. 农机化研究, 2010, 32(9): 80-84. 
																						 | 
										
																													
																							 | 
																						 
											  SONG Y X,  WANG J,  QIAO X J, et al. Development of muti-functional soil temperature measuring instrument[J]. Journal of agricultural mechanization research, 2010, 32(9): 80-84. 
																						 | 
										
																													
																							| 15 | 
																						 
											  JACKSON T,  MANSFIELD K,  SAAFI M, et al. Measuring soil temperature and moisture using wireless MEMS sensors[J]. Measurement, 2008, 41(4): 381-390. 
																						 | 
										
																													
																							| 16 | 
																						 
											  MERL T,  RASMUSSEN M R,  KOCH L R, et al. Measuring soil pH at in situ like conditions using optical pH sensors (pH-optodes)[J]. Soil biology and biochemistry, 2022, 175: ID 108862. 
																						 | 
										
																													
																							| 17 | 
																						 
											  NAIR N,  AKSHAYA A V,  JOSEPH J. An in-situ soil pH sensor with solid electrodes[J]. IEEE sensors letters, 2022, 6(8): 1-4. 
																						 | 
										
																													
																							| 18 | 
																						 
											  ELDEEB M A,  DHAMU V N,  PAUL A, et al. Espial: Electrochemical soil pH sensor for in situ real-time monitoring[J]. Micromachines (basel), 2023, 14(12): ID 2188. 
																						 | 
										
																													
																							| 19 | 
																						 
											  HAMMARLING K,  ENGHOLM M,  ANDERSSON H, et al. Broad-range hydrogel-based pH sensor with capacitive readout manufactured on a flexible substrate[J]. Chemosensors, 2018, 6(3): ID 30. 
																						 | 
										
																													
																							| 20 | 
																						 
											  ADESANWO O O,  IGE D V,  THIBAULT L, et al. Comparison of colorimetric and ICP methods of phosphorus determination in soil extracts[J]. Communications in soil science and plant analysis, 2013, 44(21): 3061-3075. 
																						 | 
										
																													
																							| 21 | 
																						 
											  MOONRUNGSEE N,  PENCHAREE S,  JAKMUNEE J. Colorimetric analyzer based on mobile phone camera for determination of available phosphorus in soil[J]. Talanta, 2015, 136: 204-209. 
																						 | 
										
																													
																							| 22 | 
																						 
											  AGARWAL S,  BHANGALE N,  DHANURE K, et al. Application of colorimetry to determine soil fertility through naive Bayes classification algorithm[C]// 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT). Piscataway, New Jersey, USA: IEEE, 2018: 1-6. 
																						 | 
										
																													
																							| 23 | 
																						 
											  QIAO Y,  ZHANG S. Near-infrared spectroscopy technology for soil nutrients detection based on LS-SVM[C]// Computer and Computing Technologies in Agriculture V, Berlin, German: Springer, 2012: 325-335. 
																						 | 
										
																													
																							| 24 | 
																						 
											  PENG Y P,  ZHAO L,  HU Y M, et al. Prediction of soil nutrient contents using visible and near-infrared reflectance spectroscopy[J]. ISPRS international journal of geo-information, 2019, 8(10): ID 437. 
																						 | 
										
																													
																							| 25 | 
																						 
											  HE Y,  LIU X, LYU Y, et al. Quantitative analysis of nutrient elements in soil using single and double-pulse laser-induced breakdown spectroscopy[J]. Sensors (basel), 2018, 18(5): ID E1526. 
																						 | 
										
																													
																							| 26 | 
																						 
											  GARLAND N T,  MCLAMORE E S,  CAVALLARO N D, et al. Flexible laser-induced graphene for nitrogen sensing in soil[J]. ACS applied materials & interfaces, 2018, 10(45): 39124-39133. 
																						 | 
										
																													
																							| 27 | 
																						 
											  TANG C L,  FU D C,  WANG R J, et al. An electrochemical microfluidic system for on-site continuous monitoring of soil phosphate[J]. IEEE sensors journal, 2024, 24(5): 6754-6764. 
																						 | 
										
																													
																							| 28 | 
																						 
											  KIM H J,  HUMMEL J W,  SUDDUTH K A, et al. Simultaneous analysis of soil macronutrients using ion-selective electrodes[J]. Soil science society of America journal, 2007, 71(6): 1867-1877. 
																						 | 
										
																													
																							| 29 | 
																						 
											  ACHARYA G,  DOORNEWEERD D D,  CHANG C L, et al. Label-free optical detection of anthrax-causing spores[J]. Journal of the American chemical society, 2007, 129(4): 732-733. 
																						 | 
										
																													
																							| 30 | 
																						 
											  YAGHOUBI M,  RAHIMI F,  NEGAHDARI B, et al. A lectin-coupled porous silicon-based biosensor: Label-free optical detection of bacteria in a real-time mode[J]. Scientific reports, 2020, 10: ID 16017. 
																						 | 
										
																													
																							| 31 | 
																						 
											  JIN K S,  FALLGREN P H,  SANTIAGO N A, et al. Monitoring in situ microbial activities in wet or clayey soils by a novel microbial-electrochemical technology[J]. Environmental technology & innovation, 2020, 18: ID 100695. 
																						 | 
										
																													
																							| 32 | 
																						 
											  POTAMITIS I,  RIGAKIS I,  VIDAKIS N, et al. Affordable bimodal optical sensors to spread the use of automated insect monitoring[J]. Journal of sensors, 2018, 2018: ID 3949415. 
																						 | 
										
																													
																							| 33 | 
																						 
											  MANKIN R W,  BRANDHORST-HUBBARD J,  FLANDERS K L, et al. Eavesdropping on insects hidden in soil and interior structures of plants[J]. Journal of economic entomology, 2000, 93(4): 1173-1182. 
																						 | 
										
																													
																							| 34 | 
																						 
											  RUSTIA D J A,  LIN C E,  CHUNG J Y, et al. Application of an image and environmental sensor network for automated greenhouse insect pest monitoring[J]. Journal of asia-pacific entomology, 2020, 23(1): 17-28. 
																						 | 
										
																													
																							| 35 | 
																						 
											  DESAULES A,  AMMANN S,  SCHWAB P. Advances in long-term soil-pollution monitoring of Switzerland[J]. Journal of plant nutrition and soil science, 2010, 173(4): 525-535. 
																						 | 
										
																													
																							| 36 | 
																						 
											  RATTANARAT P,  DUNGCHAI W,  CATE D, et al. Multilayer paper-based device for colorimetric and electrochemical quantification of metals[J]. Analytical chemistry, 2014, 86(7): 3555-3562. 
																						 | 
										
																													
																							| 37 | 
																						 
											  CHEN Y-T, C-YHSEIH,  SARANGADHARAN I, et al. Beyond the limit of ideal nernst sensitivity: Ultra-high sensitivity of heavy metal ion detection with ion-selective high electron mobility transistors[J]. ECS Journal of solid state science and technology, 2018, 7(9): Q176-Q183. 
																						 | 
										
																													
																							| 38 | 
																						 
											  DAS T R,  SHARMA P K. Sensitive and selective electrochemical detection of Cd2 + by using bimetal oxide decorated Graphene oxide (Bi 2 O3/Fe 2 O3 @GO) electrode[J]. Microchemical journal, 2019, 147: 1203-1214. 
																						 | 
										
																													
																							| 39 | 
																						 
											  PRASAD B B,  JAUHARI D,  TIWARI M P. Doubly imprinted polymer nanofilm-modified electrochemical sensor for ultra-trace simultaneous analysis of glyphosate and glufosinate[J]. Biosensors & bioelectronics, 2014, 59: 81-88. 
																						 | 
										
																													
																							| 40 | 
																						 
											  VIGNESH KUMAR T H,  RAMAN PILLAI S K,  CHAN-PARK M B, et al. Highly selective detection of an organophosphorus pesticide, methyl parathion, using Ag–ZnO–SWCNT based field-effect transistors[J]. Journal of materials chemistry C, 2020, 8(26): 8864-8875. 
																						 | 
										
																													
																							| 41 | 
																						 
											 张俊卿, 陈翔宇, 王儒敬, 等. 用于水肥系统的养分离子快检装置研制与试验[J]. 农业工程学报, 2022, 38(2): 102-110. 
																						 | 
										
																													
																							 | 
																						 
											  ZHANG J Q,  CHEN X Y,  WANG R J, et al. Development and experiment of the rapid detection device of the nutrient ion concentrations for fertigation system[J]. Transactions of the Chinese society of agricultural engineering, 2022, 38(2): 102-110. 
																						 | 
										
																													
																							| 42 | 
																						 
											  ALAHI MD ESHRAT E,  LI X,  SUBHAS M, et al. A temperature compensated smart nitrate-sensor for agricultural industry[J]. IEEE transactions on industrial electronics, 2017, 64(9): 7333-7341. 
																						 | 
										
																													
																							| 43 | 
																						 
											  ZHANG Y,  QI Y,  WANG L, et al. Sensing technologies for detection of non-point source pollutants in rice paddy fields[J]. International journal of precision agricultural aviation, 2020, 1(1): 1-13. 
																						 | 
										
																													
																							| 44 | 
																						 
											  BAHAMON-PINZON D,  MOREIRA G,  OBARE S, et al. Development of a nanocopper-decorated laser-scribed sensor for organophosphorus pesticide monitoring in aqueous samples[J]. Microchimica Acta, 2022, 189(7): ID 254. 
																						 | 
										
																													
																							| 45 | 
																						 
											  JANG A,  ZOU Z W,  LEE K K, et al. State-of-the-art lab chip sensors for environmental water monitoring[J]. Measurement science and technology, 2011, 22(3): ID 032001. 
																						 | 
										
																													
																							| 46 | 
																						 
											  LIN J Y,  TSAI H L,  LYU W H. An integrated wireless multi-sensor system for monitoring the water quality of aquaculture [J]. Sensors (basel), 2021, 21(24): ID 8179. 
																						 | 
										
																													
																							| 47 | 
																						 
											 顾浩, 王志强, 吴昊, 等. 基于荧光法的溶解氧传感器研制及试验[J]. 智慧农业(中英文), 2020, 2(2): 48-58. 
																						 | 
										
																													
																							 | 
																						 
											  GU H,  WANG Z Q,  WU H, et al. A fluorescence based dissolved oxygen sensor[J]. Smart agriculture, 2020, 2(2): 48-58. 
																						 | 
										
																													
																							| 48 | 
																						 
											 马淑英, 马玉泉, 张丽红, 等. 农业设施中二氧化碳测控仪的研制[J]. 农机化研究, 2007, 29(12): 104-105, 115. 
																						 | 
										
																													
																							 | 
																						 
											  MA S Y,  MA Y Q,  ZHANG L H, et al. The designing of carbon dioxide density detection instrument used in agriculture[J]. Journal of agricultural mechanization research, 2007, 29(12): 104-105, 115. 
																						 | 
										
																													
																							| 49 | 
																						 
											 张尉, 高星星, 方贤才, 等. 适用于农业环境的便携式激光CO2传感器设计[J]. 中国农机化学报, 2017, 38(3): 73-76, 81. 
																						 | 
										
																													
																							 | 
																						 
											  ZHANG W,  GAO X X,  FANG X C, et al. Design of portable laser CO2 sensor for agricultural environment[J]. Journal of Chinese agricultural mechanization, 2017, 38(3): 73-76, 81. 
																						 | 
										
																													
																							| 50 | 
																						 
											  LI X,  XU J,  JIANG Y, et al. Toward agricultural ammonia volatilization monitoring: A flexible polyaniline/Ti3C2T hybrid sensitive films based gas sensor[J]. Sensors and actuators B: Chemical, 2020, 316: ID 128144. 
																						 | 
										
																													
																							| 51 | 
																						 
											 DAS K,  JANA B,  PRAMANIK M, et al. Chemically synthesized ZnO nanocrystal-based ethylene sensor operative at natural humid condition[J]. Applied physics A, 2022, 128(11): ID 962. 
																						 | 
										
																													
																							| 52 | 
																						 
											  YANG X,  LEONG J L K,  SUN M T, et al. Quantitative determination of ethylene using a smartphone-based optical fiber sensor (SOFS) coupled with pyrene-tagged Grubbs catalyst[J]. Biosensors, 2022, 12(5): ID 316. 
																						 | 
										
																													
																							| 53 | 
																						 
											 陈友安, 张建, 高翔, 等. 水稻田甲烷在线监测系统设计[J]. 仪表技术, 2016(9): 7-11. 
																						 | 
										
																													
																							 | 
																						 
											  CHEN Y A,  ZHANG J,  GAO X, et al. Design of online monitoring system for methane in the paddy field[J]. Instrumentation technology, 2016(9): 7-11. 
																						 | 
										
																													
																							| 54 | 
																						 
											  KOMARUDIN M,  SEPTAMA H D,  YULIANTI T. Autonomous cyber physical systems for monitoring of methane gas in rice field[C]// 2nd International Conference on Smart and Innovative Agriculture (ICoSIA 2021), Paris, France: Atlantis Press, 2022: 138-143. 
																						 | 
										
																													
																							| 55 | 
																						 
											  PENG Y,  ZHOU J,  SONG X, et al. A flexible pressure sensor with ink printed porous graphene for continuous cardiovascular status monitoring[J]. Sensors (basel), 2021, 21(2): ID E485. 
																						 | 
										
																													
																							| 56 | 
																						 
											  GONZÁLEZ-SÁNCHEZ C,  FRAILE J C,  PÉREZ-TURIEL J, et al. Capacitive sensing for non-invasive breathing and heart monitoring in non-restrained, non-sedated laboratory mice[J]. Sensors (basel), 2016, 16(7): ID E1052. 
																						 | 
										
																													
																							| 57 | 
																						 
											 ION M,  DINULESCU S,  FIRTAT B, et al. Design and fabrication of a new wearable pressure sensor for blood pressure monitoring[J]. Sensors (basel), 2021, 21(6): ID 2075. 
																						 | 
										
																													
																							| 58 | 
																						 
											  NEETHIRAJAN S,  KEMP B. Digital phenotyping in livestock farming[J]. Animals (basel), 2021, 11(7): ID 2009. 
																						 | 
										
																													
																							| 59 | 
																						 
											 杨亮, 王辉, 陈睿鹏, 等. 猪专用传感器研究进展[J]. 智能化农业装备学报(中英文), 2023, 4(2): 22-34. 
																						 | 
										
																													
																							 | 
																						 
											  YANG L,  WANG H,  CHEN R P, et al. Advances in research on pig-specific sensors[J]. Journal of intelligent agricultural mechanization, 2023, 4(2): 22-34. 
																						 | 
										
																													
																							| 60 | 
																						 
											  LI J,  LIAO Z Q,  LIANG T, et al. High sensitivity, fast response and anti-interference crack-based reduced graphene oxide strain sensor for pig acoustic recognition [J]. Computers and electronics in agriculture, 2022, 200: ID 107267. 
																						 | 
										
																													
																							| 61 | 
																						 
											  YIN Y,  TU D,  SHEN W, et al. Recognition of sick pig cough sounds based on convolutional neural network in field situations[J]. Information processing in agriculture, 2021, 8(3): 369-379. 
																						 | 
										
																													
																							| 62 | 
																						 
											  ZHAO J,  LI X,  LIU W, et al. DNN-HMM based acoustic model for continuous pig cough sound recognition[J]. International journal of agricultural and biological engineering, 2020, 13(3): 186-193. 
																						 | 
										
																													
																							| 63 | 
																						 
											  GOUGH D A,  KUMOSA L S,  ROUTH T L, et al. Function of an implanted tissue glucose sensor for more than 1 year in animals[J]. Science translational medicine, 2010, 2(42): ID 42ra53. 
																						 | 
										
																													
																							| 64 | 
																						 
											  CHAI Y,  CHEN C,  LUO X, et al. Cohabiting plant-wearable sensor in situ monitors water transport in plant[J]. Advanced science (weinh), 2021, 8(10): ID 2003642. 
																						 | 
										
																													
																							| 65 | 
																						 
											  QU C C,  CAO L X,  LI M L, et al. Liquid metal-based plant electronic tattoos for in situ monitoring of plant physiology[J]. Science China technological sciences, 2023, 66(6): 1617-1628. 
																						 | 
										
																													
																							| 66 | 
																						 
											  YIN S,  IBRAHIM H,  SCHNABLE P S, et al. A field‐ deployable, wearable leaf sensor for continuous monitoring of vapor‐pressure deficit [J]. Advanced materials technologies, 2021, 6(6): ID 202001246. 
																						 | 
										
																													
																							| 67 | 
																						 
											  LEE G,  HOSSAIN O,  JAMALZADEGAN S, et al. Abaxial leaf surface-mounted multimodal wearable sensor for continuous plant physiology monitoring[J]. Science advances, 2023, 9(15): ID eade2232. 
																						 | 
										
																													
																							| 68 | 
																						 
											  TANG W,  YAN T,  WANG F, et al. Rapid fabrication of wearable carbon nanotube/graphite strain sensor for real-time monitoring of plant growth [J]. Carbon, 2019, 147: 295-302. 
																						 | 
										
																													
																							| 69 | 
																						 
											  OREN S,  CEYLAN H,  SCHNABLE P S, et al. High‐resolution patterning and transferring of graphene‐based nanomaterials onto tape toward roll‐to‐roll production of tape‐based wearable sensors [J]. Advanced materials technologies, 2017, 2(12): ID 1700223. 
																						 | 
										
																													
																							| 70 | 
																						 
											  WANG S,  LI W,  CHANG K, et al. Localized surface plasmon resonance-based abscisic acid biosensor using aptamer-functionalized gold nanoparticles[J]. PLoS One, 2017, 12(9): ID e0185530. 
																						 | 
										
																													
																							| 71 | 
																						 
											  WEI C,  ZHOU H,  CHEN C, et al. On-line monitoring 1h-indole-3-acetic acid in plant tissues using molecular imprinting monolayer techniques on a surface plasmon resonance sensor[J]. Analytical letters, 2011, 44(18): 2911-2921. 
																						 | 
										
																													
																							| 72 | 
																						 
											 陈玥瑶, 夏静静, 韦芸, 等. 近红外光谱法无损检测平谷产大桃品质方法研究[J]. 分析化学, 2023, 51(3): 454-462. 
																						 | 
										
																													
																							 | 
																						 
											  CHEN Y Y,  XIA J J,  WEI Y, et al. Research on nondestructive quality test of Pinggu peach by near-infrared spectroscopy[J]. Chinese journal of analytical chemistry, 2023, 51(3): 454-462. 
																						 | 
										
																													
																							| 73 | 
																						 
											  SINGH R,  ZHANG W,  LIU X C, et al. WaveFlex biosensor: MXene-immobilized w-shaped fiber-based LSPR sensor for highly selective tyramine detection[J]. Optics laser technology, 2024, 171: ID 110357. 
																						 | 
										
																													
																							| 74 | 
																						 
											  MISHRA R K,  HUBBLE L J,  MARTÍN A, et al. Wearable flexible and stretchable glove biosensor for on-site detection of organophosphorus chemical threats[J]. ACS sensors, 2017, 2(4): 553-561. 
																						 | 
										
																													
																							| 75 | 
																						 
											  ZHAO F,  HE J,  LI X, et al. Smart plant-wearable biosensor for in situ pesticide analysis[J]. Biosens bioelectron, 2020, 170: ID 112636. 
																						 | 
										
																													
																							| 76 | 
																						 
											  ZHANG X N,  HUANG X Y,  XU Y W, et al. Single-step electrochemical sensing of ppt-level lead in leaf vegetables based on peroxidase-mimicking metal-organic framework[J]. Biosensors and bioelectronics, 2020, 168: ID 112544. 
																						 | 
										
																													
																							| 77 | 
																						 
											  TÜMAY S O,  ŞANKO V,  DEMIRBAS E, et al. Fluorescence determination of trace level of cadmium with pyrene modified nanocrystalline cellulose in food and soil samples[J]. Food and chemical toxicology, 2020, 146: ID 111847. 
																						 | 
										
																													
																							| 78 | 
																						 
											  GAI P,  GU C,  HOU T, et al. Ultrasensitive self-powered aptasensor based on enzyme biofuel cell and DNA bioconjugate: A facile and powerful tool for antibiotic residue detection[J]. Analytical chemistry, 2017, 89(3): 2163-2169. 
																						 | 
										
																													
																							| 79 | 
																						 
											  PAN M F,  GU Y,  ZHANG M Y, et al. Reproducible molecularly imprinted QCM sensor for accurate, stable, and sensitive detection of enrofloxacin residue in animal-derived foods[J]. Food analytical methods, 2018, 11(2): 495-503. 
																						 | 
										
																													
																							| 80 | 
																						 
											  TROFIMCHUK E,  NILGHAZ A,  SUN S, et al. Determination of norfloxacin residues in foods by exploiting the coffee-ring effect and paper-based microfluidics device coupling with smartphone-based detection[J]. journal of food science, 2020, 85(3): 736-743. 
																						 | 
										
																													
																							| 81 | 
																						 
											  ALSAMMARRAIE F K,  LIN M S. Using standing gold nanorod arrays as surface-enhanced Raman spectroscopy (SERS) substrates for detection of carbaryl residues in fruit juice and milk[J]. Journal of agricultural and food chemistry, 2017, 65(3): 666-674. 
																						 | 
										
																													
																							| 82 | 
																						 
											  CHENG J,  ZHANG S,  WANG S, et al. Rapid and sensitive detection of acrylamide in fried food using dispersive solid-phase extraction combined with surface-enhanced Raman spectroscopy[J]. Food chemistry, 2019, 276: 157-163. 
																						 | 
										
																													
																							| 83 | 
																						 
											  XUE F,  WANG X,  WANG J Q, et al. Deep visual odometry with adaptive memory[J]. IEEE transactions on pattern analysis and machine intelligence, 2022, 44(2): 940-954. 
																						 | 
										
																													
																							| 84 | 
																						 
											  YIN X,  NOGUCHI N,  ISHI K. Development of an obstacle avoidance system for a field robot using a 3D camera[J]. Engineering in agriculture, environment and food, 2013, 6(2): 41-47. 
																						 | 
										
																													
																							| 85 | 
																						 
											 肖跃进, 梁春英, 李新宇, 等. 基于云平台的农业作业机械工况监测系统的研究[J]. 黑龙江八一农垦大学学报, 2017, 29(2): 102-107. 
																						 | 
										
																													
																							 | 
																						 
											  XIAO Y J,  LIANG C Y,  LI X Y, et al. Research on operating condition monitoring system of agricultural machine based on cloud platform[J]. Journal of Heilongjiang bayi agricultural university, 2017, 29(2): 102-107. 
																						 | 
										
																													
																							| 86 | 
																						 
											 金鑫, 李倩文, 苑严伟, 等. 2BFJ-24型小麦精量播种变量施肥机设计与试验[J]. 农业机械学报, 2018, 49(5): 84-92. 
																						 | 
										
																													
																							 | 
																						 
											  JIN X,  LI Q W,  YUAN Y W, et al. Design and test of 2BFJ-24 type variable fertilizer and wheat precision seed sowing machine[J]. Transactions of the Chinese society for agricultural machinery, 2018, 49(5): 84-92. 
																						 | 
										
																													
																							| 87 | 
																						 
											 尹文庆, 浦浩, 胡飞, 等. 基于结构光视觉的联合收获机谷粒体积流量测量方法[J]. 农业机械学报, 2020, 51(9): 101-107. 
																						 | 
										
																													
																							 | 
																						 
											  YIN W Q,  PU H,  HU F, et al. Measurement method of grain volume flow based on structured light[J]. Transactions of the Chinese society for agricultural machinery, 2020, 51(9): 101-107. 
																						 | 
										
																													
																							| 88 | 
																						 
											 耿端阳, 谭德蕾, 苏国粱, 等. 压力式谷物产量监测系统优化与试验验证[J]. 农业工程学报, 2021, 37(9): 245-252. 
																						 | 
										
																													
																							 | 
																						 
											  GENG D Y,  TAN D L,  SU G L, et al. Optimization and experimental verification of grain yield monitoring system based on pressure sensors[J]. Transactions of the Chinese society of agricultural engineering, 2021, 37(9): 245-252. 
																						 | 
										
																													
																							| 89 | 
																						 
											 钱震杰, 金诚谦, 刘政, 等. 无人农场中的智能控制技术应用现状与趋势(英文)[J]. 智能化农业装备学报(中英文), 2023, 4: 1-13. 
																						 | 
										
																													
																							 | 
																						 
											  QIAN Z J,  JIN C Q,  LIU Z, et al. Development status and trends of intelligent control technology in unmanned farms[J]. Journal of intelligent agricultural mechanization, 2023, 4: 1-13. 
																						 |