1 |
金欢庆, 热孜燕·瓦卡斯. 中国智慧农业发展现状及对策[J]. 农业展望, 2023, 19(11): 62-66.
|
|
JIN H Q, REZIYAN WAKASI. Development status and countermeasures of intelligent agriculture in China[J]. Agricultural outlook, 2023, 19(11): 62-66.
|
2 |
刘羽飞, 何勇, 刘飞, 等. 农业传感器技术在我国的应用和市场:现状与未来展望[J]. 浙江大学学报(农业与生命科学版), 2023, 49(3): 293-304.
|
|
LIU Y F, HE Y, LIU F, et al. Application and market of agricultural sensor technology in China: Current status and future perspectives[J]. Journal of Zhejiang university (agriculture and life sciences), 2023, 49(3): 293-304.
|
3 |
MAHMOUDPOUR M, TORBATI M, MOUSAVI M M, et al. Nanomaterial-based molecularly imprinted polymers for pesticides detection: Recent trends and future prospects[J]. Trends in Analytical Chemistry, 2020, 129: ID 115943.
|
4 |
MA P, ZHU H R, LU H, et al. Design of biodegradable wheat-straw based triboelectric nanogenerator as self-powered sensor for wind detection[J]. Nano energy, 2021, 86: ID 106032.
|
5 |
DE LARA A, LONGCHAMPS L, KHOSLA R. Soil water content and high-resolution imagery for precision irrigation: Maize yield[J]. Agronomy, 2019, 9(4): 174.
|
6 |
VISCARRA ROSSEL R A, BOUMA J. Soil sensing: A new paradigm for agriculture[J]. Agricultural systems, 2016, 148: 71-74.
|
7 |
YIN H, CAO Y, MARELLI B, et al. Soil sensors and plant wearables for smart and precision agriculture[J]. Advanced materials, 2021, 33(20): ID e2007764.
|
8 |
YU L M, GAO W L, SHAMSHIRI R R, et al. Review of research progress on soil moisture sensor technology[J]. International journal of agricultural and biological engineering, 2021, 14(3): 32-42.
|
9 |
XIAO D Q, FENG J Z, WANG N, et al. Integrated soil moisture and water depth sensor for paddy fields[J]. Computers and electronics in agriculture, 2013, 98: 214-221.
|
10 |
HABIBULLAH B, ALEXANDER S, DIDIER B, et al. Soil moisture and density monitoring methodology using TDR measurements[J]. International journal of pavement engineering, 2020, 21(10): 1263-1274.
|
11 |
VELLIDIS G, TUCKER M, PERRY C, et al. A real-time wireless smart sensor array for scheduling irrigation[J]. Computers and electronics in agriculture, 2008, 61(1): 44-50.
|
12 |
XU Y, DUAN J L, JIANG R, et al. Study on the detection of soil water content based on the pulsed acoustic wave (PAW) method[J]. IEEE access, 2021, 9: 15731-15743.
|
13 |
ZHENG X M, FENG Z Z, LI L, et al. Simultaneously estimating surface soil moisture and roughness of bare soils by combining optical and radar data[J]. International journal of applied earth observation and geoinformation, 2021, 100: ID 102345.
|
14 |
宋豫晓, 王建, 乔晓军, 等. 多功能土壤温度测量仪的研发[J]. 农机化研究, 2010, 32(9): 80-84.
|
|
SONG Y X, WANG J, QIAO X J, et al. Development of muti-functional soil temperature measuring instrument[J]. Journal of agricultural mechanization research, 2010, 32(9): 80-84.
|
15 |
JACKSON T, MANSFIELD K, SAAFI M, et al. Measuring soil temperature and moisture using wireless MEMS sensors[J]. Measurement, 2008, 41(4): 381-390.
|
16 |
MERL T, RASMUSSEN M R, KOCH L R, et al. Measuring soil pH at in situ like conditions using optical pH sensors (pH-optodes)[J]. Soil biology and biochemistry, 2022, 175: ID 108862.
|
17 |
NAIR N, AKSHAYA A V, JOSEPH J. An in-situ soil pH sensor with solid electrodes[J]. IEEE sensors letters, 2022, 6(8): 1-4.
|
18 |
ELDEEB M A, DHAMU V N, PAUL A, et al. Espial: Electrochemical soil pH sensor for in situ real-time monitoring[J]. Micromachines (basel), 2023, 14(12): ID 2188.
|
19 |
HAMMARLING K, ENGHOLM M, ANDERSSON H, et al. Broad-range hydrogel-based pH sensor with capacitive readout manufactured on a flexible substrate[J]. Chemosensors, 2018, 6(3): ID 30.
|
20 |
ADESANWO O O, IGE D V, THIBAULT L, et al. Comparison of colorimetric and ICP methods of phosphorus determination in soil extracts[J]. Communications in soil science and plant analysis, 2013, 44(21): 3061-3075.
|
21 |
MOONRUNGSEE N, PENCHAREE S, JAKMUNEE J. Colorimetric analyzer based on mobile phone camera for determination of available phosphorus in soil[J]. Talanta, 2015, 136: 204-209.
|
22 |
AGARWAL S, BHANGALE N, DHANURE K, et al. Application of colorimetry to determine soil fertility through naive Bayes classification algorithm[C]// 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT). Piscataway, New Jersey, USA: IEEE, 2018: 1-6.
|
23 |
QIAO Y, ZHANG S. Near-infrared spectroscopy technology for soil nutrients detection based on LS-SVM[C]// Computer and Computing Technologies in Agriculture V, Berlin, German: Springer, 2012: 325-335.
|
24 |
PENG Y P, ZHAO L, HU Y M, et al. Prediction of soil nutrient contents using visible and near-infrared reflectance spectroscopy[J]. ISPRS international journal of geo-information, 2019, 8(10): ID 437.
|
25 |
HE Y, LIU X, LYU Y, et al. Quantitative analysis of nutrient elements in soil using single and double-pulse laser-induced breakdown spectroscopy[J]. Sensors (basel), 2018, 18(5): ID E1526.
|
26 |
GARLAND N T, MCLAMORE E S, CAVALLARO N D, et al. Flexible laser-induced graphene for nitrogen sensing in soil[J]. ACS applied materials & interfaces, 2018, 10(45): 39124-39133.
|
27 |
TANG C L, FU D C, WANG R J, et al. An electrochemical microfluidic system for on-site continuous monitoring of soil phosphate[J]. IEEE sensors journal, 2024, 24(5): 6754-6764.
|
28 |
KIM H J, HUMMEL J W, SUDDUTH K A, et al. Simultaneous analysis of soil macronutrients using ion-selective electrodes[J]. Soil science society of America journal, 2007, 71(6): 1867-1877.
|
29 |
ACHARYA G, DOORNEWEERD D D, CHANG C L, et al. Label-free optical detection of anthrax-causing spores[J]. Journal of the American chemical society, 2007, 129(4): 732-733.
|
30 |
YAGHOUBI M, RAHIMI F, NEGAHDARI B, et al. A lectin-coupled porous silicon-based biosensor: Label-free optical detection of bacteria in a real-time mode[J]. Scientific reports, 2020, 10: ID 16017.
|
31 |
JIN K S, FALLGREN P H, SANTIAGO N A, et al. Monitoring in situ microbial activities in wet or clayey soils by a novel microbial-electrochemical technology[J]. Environmental technology & innovation, 2020, 18: ID 100695.
|
32 |
POTAMITIS I, RIGAKIS I, VIDAKIS N, et al. Affordable bimodal optical sensors to spread the use of automated insect monitoring[J]. Journal of sensors, 2018, 2018: ID 3949415.
|
33 |
MANKIN R W, BRANDHORST-HUBBARD J, FLANDERS K L, et al. Eavesdropping on insects hidden in soil and interior structures of plants[J]. Journal of economic entomology, 2000, 93(4): 1173-1182.
|
34 |
RUSTIA D J A, LIN C E, CHUNG J Y, et al. Application of an image and environmental sensor network for automated greenhouse insect pest monitoring[J]. Journal of asia-pacific entomology, 2020, 23(1): 17-28.
|
35 |
DESAULES A, AMMANN S, SCHWAB P. Advances in long-term soil-pollution monitoring of Switzerland[J]. Journal of plant nutrition and soil science, 2010, 173(4): 525-535.
|
36 |
RATTANARAT P, DUNGCHAI W, CATE D, et al. Multilayer paper-based device for colorimetric and electrochemical quantification of metals[J]. Analytical chemistry, 2014, 86(7): 3555-3562.
|
37 |
CHEN Y-T, C-YHSEIH, SARANGADHARAN I, et al. Beyond the limit of ideal nernst sensitivity: Ultra-high sensitivity of heavy metal ion detection with ion-selective high electron mobility transistors[J]. ECS Journal of solid state science and technology, 2018, 7(9): Q176-Q183.
|
38 |
DAS T R, SHARMA P K. Sensitive and selective electrochemical detection of Cd2 + by using bimetal oxide decorated Graphene oxide (Bi 2 O3/Fe 2 O3 @GO) electrode[J]. Microchemical journal, 2019, 147: 1203-1214.
|
39 |
PRASAD B B, JAUHARI D, TIWARI M P. Doubly imprinted polymer nanofilm-modified electrochemical sensor for ultra-trace simultaneous analysis of glyphosate and glufosinate[J]. Biosensors & bioelectronics, 2014, 59: 81-88.
|
40 |
VIGNESH KUMAR T H, RAMAN PILLAI S K, CHAN-PARK M B, et al. Highly selective detection of an organophosphorus pesticide, methyl parathion, using Ag–ZnO–SWCNT based field-effect transistors[J]. Journal of materials chemistry C, 2020, 8(26): 8864-8875.
|
41 |
张俊卿, 陈翔宇, 王儒敬, 等. 用于水肥系统的养分离子快检装置研制与试验[J]. 农业工程学报, 2022, 38(2): 102-110.
|
|
ZHANG J Q, CHEN X Y, WANG R J, et al. Development and experiment of the rapid detection device of the nutrient ion concentrations for fertigation system[J]. Transactions of the Chinese society of agricultural engineering, 2022, 38(2): 102-110.
|
42 |
ALAHI MD ESHRAT E, LI X, SUBHAS M, et al. A temperature compensated smart nitrate-sensor for agricultural industry[J]. IEEE transactions on industrial electronics, 2017, 64(9): 7333-7341.
|
43 |
ZHANG Y, QI Y, WANG L, et al. Sensing technologies for detection of non-point source pollutants in rice paddy fields[J]. International journal of precision agricultural aviation, 2020, 1(1): 1-13.
|
44 |
BAHAMON-PINZON D, MOREIRA G, OBARE S, et al. Development of a nanocopper-decorated laser-scribed sensor for organophosphorus pesticide monitoring in aqueous samples[J]. Microchimica Acta, 2022, 189(7): ID 254.
|
45 |
JANG A, ZOU Z W, LEE K K, et al. State-of-the-art lab chip sensors for environmental water monitoring[J]. Measurement science and technology, 2011, 22(3): ID 032001.
|
46 |
LIN J Y, TSAI H L, LYU W H. An integrated wireless multi-sensor system for monitoring the water quality of aquaculture [J]. Sensors (basel), 2021, 21(24): ID 8179.
|
47 |
顾浩, 王志强, 吴昊, 等. 基于荧光法的溶解氧传感器研制及试验[J]. 智慧农业(中英文), 2020, 2(2): 48-58.
|
|
GU H, WANG Z Q, WU H, et al. A fluorescence based dissolved oxygen sensor[J]. Smart agriculture, 2020, 2(2): 48-58.
|
48 |
马淑英, 马玉泉, 张丽红, 等. 农业设施中二氧化碳测控仪的研制[J]. 农机化研究, 2007, 29(12): 104-105, 115.
|
|
MA S Y, MA Y Q, ZHANG L H, et al. The designing of carbon dioxide density detection instrument used in agriculture[J]. Journal of agricultural mechanization research, 2007, 29(12): 104-105, 115.
|
49 |
张尉, 高星星, 方贤才, 等. 适用于农业环境的便携式激光CO2传感器设计[J]. 中国农机化学报, 2017, 38(3): 73-76, 81.
|
|
ZHANG W, GAO X X, FANG X C, et al. Design of portable laser CO2 sensor for agricultural environment[J]. Journal of Chinese agricultural mechanization, 2017, 38(3): 73-76, 81.
|
50 |
LI X, XU J, JIANG Y, et al. Toward agricultural ammonia volatilization monitoring: A flexible polyaniline/Ti3C2T hybrid sensitive films based gas sensor[J]. Sensors and actuators B: Chemical, 2020, 316: ID 128144.
|
51 |
DAS K, JANA B, PRAMANIK M, et al. Chemically synthesized ZnO nanocrystal-based ethylene sensor operative at natural humid condition[J]. Applied physics A, 2022, 128(11): ID 962.
|
52 |
YANG X, LEONG J L K, SUN M T, et al. Quantitative determination of ethylene using a smartphone-based optical fiber sensor (SOFS) coupled with pyrene-tagged Grubbs catalyst[J]. Biosensors, 2022, 12(5): ID 316.
|
53 |
陈友安, 张建, 高翔, 等. 水稻田甲烷在线监测系统设计[J]. 仪表技术, 2016(9): 7-11.
|
|
CHEN Y A, ZHANG J, GAO X, et al. Design of online monitoring system for methane in the paddy field[J]. Instrumentation technology, 2016(9): 7-11.
|
54 |
KOMARUDIN M, SEPTAMA H D, YULIANTI T. Autonomous cyber physical systems for monitoring of methane gas in rice field[C]// 2nd International Conference on Smart and Innovative Agriculture (ICoSIA 2021), Paris, France: Atlantis Press, 2022: 138-143.
|
55 |
PENG Y, ZHOU J, SONG X, et al. A flexible pressure sensor with ink printed porous graphene for continuous cardiovascular status monitoring[J]. Sensors (basel), 2021, 21(2): ID E485.
|
56 |
GONZÁLEZ-SÁNCHEZ C, FRAILE J C, PÉREZ-TURIEL J, et al. Capacitive sensing for non-invasive breathing and heart monitoring in non-restrained, non-sedated laboratory mice[J]. Sensors (basel), 2016, 16(7): ID E1052.
|
57 |
ION M, DINULESCU S, FIRTAT B, et al. Design and fabrication of a new wearable pressure sensor for blood pressure monitoring[J]. Sensors (basel), 2021, 21(6): ID 2075.
|
58 |
NEETHIRAJAN S, KEMP B. Digital phenotyping in livestock farming[J]. Animals (basel), 2021, 11(7): ID 2009.
|
59 |
杨亮, 王辉, 陈睿鹏, 等. 猪专用传感器研究进展[J]. 智能化农业装备学报(中英文), 2023, 4(2): 22-34.
|
|
YANG L, WANG H, CHEN R P, et al. Advances in research on pig-specific sensors[J]. Journal of intelligent agricultural mechanization, 2023, 4(2): 22-34.
|
60 |
LI J, LIAO Z Q, LIANG T, et al. High sensitivity, fast response and anti-interference crack-based reduced graphene oxide strain sensor for pig acoustic recognition [J]. Computers and electronics in agriculture, 2022, 200: ID 107267.
|
61 |
YIN Y, TU D, SHEN W, et al. Recognition of sick pig cough sounds based on convolutional neural network in field situations[J]. Information processing in agriculture, 2021, 8(3): 369-379.
|
62 |
ZHAO J, LI X, LIU W, et al. DNN-HMM based acoustic model for continuous pig cough sound recognition[J]. International journal of agricultural and biological engineering, 2020, 13(3): 186-193.
|
63 |
GOUGH D A, KUMOSA L S, ROUTH T L, et al. Function of an implanted tissue glucose sensor for more than 1 year in animals[J]. Science translational medicine, 2010, 2(42): ID 42ra53.
|
64 |
CHAI Y, CHEN C, LUO X, et al. Cohabiting plant-wearable sensor in situ monitors water transport in plant[J]. Advanced science (weinh), 2021, 8(10): ID 2003642.
|
65 |
QU C C, CAO L X, LI M L, et al. Liquid metal-based plant electronic tattoos for in situ monitoring of plant physiology[J]. Science China technological sciences, 2023, 66(6): 1617-1628.
|
66 |
YIN S, IBRAHIM H, SCHNABLE P S, et al. A field‐ deployable, wearable leaf sensor for continuous monitoring of vapor‐pressure deficit [J]. Advanced materials technologies, 2021, 6(6): ID 202001246.
|
67 |
LEE G, HOSSAIN O, JAMALZADEGAN S, et al. Abaxial leaf surface-mounted multimodal wearable sensor for continuous plant physiology monitoring[J]. Science advances, 2023, 9(15): ID eade2232.
|
68 |
TANG W, YAN T, WANG F, et al. Rapid fabrication of wearable carbon nanotube/graphite strain sensor for real-time monitoring of plant growth [J]. Carbon, 2019, 147: 295-302.
|
69 |
OREN S, CEYLAN H, SCHNABLE P S, et al. High‐resolution patterning and transferring of graphene‐based nanomaterials onto tape toward roll‐to‐roll production of tape‐based wearable sensors [J]. Advanced materials technologies, 2017, 2(12): ID 1700223.
|
70 |
WANG S, LI W, CHANG K, et al. Localized surface plasmon resonance-based abscisic acid biosensor using aptamer-functionalized gold nanoparticles[J]. PLoS One, 2017, 12(9): ID e0185530.
|
71 |
WEI C, ZHOU H, CHEN C, et al. On-line monitoring 1h-indole-3-acetic acid in plant tissues using molecular imprinting monolayer techniques on a surface plasmon resonance sensor[J]. Analytical letters, 2011, 44(18): 2911-2921.
|
72 |
陈玥瑶, 夏静静, 韦芸, 等. 近红外光谱法无损检测平谷产大桃品质方法研究[J]. 分析化学, 2023, 51(3): 454-462.
|
|
CHEN Y Y, XIA J J, WEI Y, et al. Research on nondestructive quality test of Pinggu peach by near-infrared spectroscopy[J]. Chinese journal of analytical chemistry, 2023, 51(3): 454-462.
|
73 |
SINGH R, ZHANG W, LIU X C, et al. WaveFlex biosensor: MXene-immobilized w-shaped fiber-based LSPR sensor for highly selective tyramine detection[J]. Optics laser technology, 2024, 171: ID 110357.
|
74 |
MISHRA R K, HUBBLE L J, MARTÍN A, et al. Wearable flexible and stretchable glove biosensor for on-site detection of organophosphorus chemical threats[J]. ACS sensors, 2017, 2(4): 553-561.
|
75 |
ZHAO F, HE J, LI X, et al. Smart plant-wearable biosensor for in situ pesticide analysis[J]. Biosens bioelectron, 2020, 170: ID 112636.
|
76 |
ZHANG X N, HUANG X Y, XU Y W, et al. Single-step electrochemical sensing of ppt-level lead in leaf vegetables based on peroxidase-mimicking metal-organic framework[J]. Biosensors and bioelectronics, 2020, 168: ID 112544.
|
77 |
TÜMAY S O, ŞANKO V, DEMIRBAS E, et al. Fluorescence determination of trace level of cadmium with pyrene modified nanocrystalline cellulose in food and soil samples[J]. Food and chemical toxicology, 2020, 146: ID 111847.
|
78 |
GAI P, GU C, HOU T, et al. Ultrasensitive self-powered aptasensor based on enzyme biofuel cell and DNA bioconjugate: A facile and powerful tool for antibiotic residue detection[J]. Analytical chemistry, 2017, 89(3): 2163-2169.
|
79 |
PAN M F, GU Y, ZHANG M Y, et al. Reproducible molecularly imprinted QCM sensor for accurate, stable, and sensitive detection of enrofloxacin residue in animal-derived foods[J]. Food analytical methods, 2018, 11(2): 495-503.
|
80 |
TROFIMCHUK E, NILGHAZ A, SUN S, et al. Determination of norfloxacin residues in foods by exploiting the coffee-ring effect and paper-based microfluidics device coupling with smartphone-based detection[J]. journal of food science, 2020, 85(3): 736-743.
|
81 |
ALSAMMARRAIE F K, LIN M S. Using standing gold nanorod arrays as surface-enhanced Raman spectroscopy (SERS) substrates for detection of carbaryl residues in fruit juice and milk[J]. Journal of agricultural and food chemistry, 2017, 65(3): 666-674.
|
82 |
CHENG J, ZHANG S, WANG S, et al. Rapid and sensitive detection of acrylamide in fried food using dispersive solid-phase extraction combined with surface-enhanced Raman spectroscopy[J]. Food chemistry, 2019, 276: 157-163.
|
83 |
XUE F, WANG X, WANG J Q, et al. Deep visual odometry with adaptive memory[J]. IEEE transactions on pattern analysis and machine intelligence, 2022, 44(2): 940-954.
|
84 |
YIN X, NOGUCHI N, ISHI K. Development of an obstacle avoidance system for a field robot using a 3D camera[J]. Engineering in agriculture, environment and food, 2013, 6(2): 41-47.
|
85 |
肖跃进, 梁春英, 李新宇, 等. 基于云平台的农业作业机械工况监测系统的研究[J]. 黑龙江八一农垦大学学报, 2017, 29(2): 102-107.
|
|
XIAO Y J, LIANG C Y, LI X Y, et al. Research on operating condition monitoring system of agricultural machine based on cloud platform[J]. Journal of Heilongjiang bayi agricultural university, 2017, 29(2): 102-107.
|
86 |
金鑫, 李倩文, 苑严伟, 等. 2BFJ-24型小麦精量播种变量施肥机设计与试验[J]. 农业机械学报, 2018, 49(5): 84-92.
|
|
JIN X, LI Q W, YUAN Y W, et al. Design and test of 2BFJ-24 type variable fertilizer and wheat precision seed sowing machine[J]. Transactions of the Chinese society for agricultural machinery, 2018, 49(5): 84-92.
|
87 |
尹文庆, 浦浩, 胡飞, 等. 基于结构光视觉的联合收获机谷粒体积流量测量方法[J]. 农业机械学报, 2020, 51(9): 101-107.
|
|
YIN W Q, PU H, HU F, et al. Measurement method of grain volume flow based on structured light[J]. Transactions of the Chinese society for agricultural machinery, 2020, 51(9): 101-107.
|
88 |
耿端阳, 谭德蕾, 苏国粱, 等. 压力式谷物产量监测系统优化与试验验证[J]. 农业工程学报, 2021, 37(9): 245-252.
|
|
GENG D Y, TAN D L, SU G L, et al. Optimization and experimental verification of grain yield monitoring system based on pressure sensors[J]. Transactions of the Chinese society of agricultural engineering, 2021, 37(9): 245-252.
|
89 |
钱震杰, 金诚谦, 刘政, 等. 无人农场中的智能控制技术应用现状与趋势(英文)[J]. 智能化农业装备学报(中英文), 2023, 4: 1-13.
|
|
QIAN Z J, JIN C Q, LIU Z, et al. Development status and trends of intelligent control technology in unmanned farms[J]. Journal of intelligent agricultural mechanization, 2023, 4: 1-13.
|