Smart Agriculture ›› 2024, Vol. 6 ›› Issue (5): 139-152.doi: 10.12133/j.smartag.SA202404002
• Technology and Method • Previous Articles Next Articles
YE Dapeng1,2, JING Jun1, ZHANG Zhide1,2, LI Huihuang1, WU Haoyu3, XIE Limin1,2()
Received:
2024-03-30
Online:
2024-09-30
Foundation items:
About author:
corresponding author:
CLC Number:
YE Dapeng, JING Jun, ZHANG Zhide, LI Huihuang, WU Haoyu, XIE Limin. MSH-YOLOv8: Mushroom Small Object Detection Method with Scale Reconstruction and Fusion[J]. Smart Agriculture, 2024, 6(5): 139-152.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202404002
Table 1
Experimental results at each stage of MSH-YOLOv8 ablation study
指标 | Basic | Meth A | Meth B | Meth C | Meth D | Meth E | Meth F |
---|---|---|---|---|---|---|---|
Xs Det | × | √ | √ | √ | √ | √ | √ |
Swin Transformer encoder | × | × | √ | √ | √ | √ | √ |
C2f_DCN | × | × | × | √ | √ | √ | √ |
NAM | × | × | × | × | √ | √ | √ |
SHs + New Anchors | × | × | × | × | × | √ | √ |
WIoU | × | × | × | × | × | × | √ |
AP50/% | 96.13 | 96.71 (0.61↑) | 97.44 (0.75↑) | 97.56 (0.12↑) | 97.93 (0.38↑) | 98.27 (0.35↑) | 98.49 (0.22↑) |
APs/% | 36.69 | 37.15 (1.09↑) | 38.20 (2.82↑) | 38.36 (0.42↑) | 38.62 (0.68↑) | 39.59 (2.51↑) | 39.73 (0.35↑) |
Params/M | 11.17 | 19.94 | 28.15 | 28.17 | 28.14 | 26.93 | 26.93 |
GFLOPs | 28.81 | 34.91 | 40.57 | 40.67 | 40.55 | 24.63 | 24.63 |
Table 3
Horizontal comparison of results with different attention mechanisms introduced in MSH-YOLOv8
模型 | AP50/% | APs/% | Params/M | GFLOPs |
---|---|---|---|---|
MSH-YOLO+ NAM | 98.47 | 39.70 | 26.93 | 24.63 |
MSH-YOLO+ CBAM | 98.45 | 39.66 | 27.02 | 29.58 |
MSH-YOLO+ SimAM | 98.33 | 39.63 | 27.95 | 29.62 |
MSH-YOLO+ SE | 98.39 | 39.61 | 27.03 | 29.58 |
MSH-YOLO+ ECA | 98.41 | 39.64 | 26.95 | 29.63 |
Table 4
Independent ablation experiment results for single functional modules in MSH-YOLOv8
模型 | Basic | AE1 | AE2 | AE3 | AE4 | AE5 | AE6 |
---|---|---|---|---|---|---|---|
Xs Det | × | √ | × | × | × | × | × |
C2f_DCN | × | × | √ | × | × | × | × |
Swin Transformer encoder | × | × | × | √ | × | × | × |
NAM | × | × | × | × | √ | × | × |
WIoU | × | × | × | × | × | √ | × |
SHs + New Anchors | × | × | × | × | × | × | √ |
APs/% | 36.69 | 37.15 (1.25↑) | 37.03 (0.93↑) | 37.18 (1.34↑) | 37.05 (0.98↑) | 36.71 (0.06↑) | 37.13 |
(1.19↑) |
Table 5
Horizontal comparison of experimental results between MSH-YOLOv8 and other models
模型名称 | AP50/% | 变化量/% | AP@50-95/% | 变化量/% | APs/% | 变化量/% | GFLOPs | Params/M |
---|---|---|---|---|---|---|---|---|
YOLOv5 | 95.81 | 2.80↑ | 71.13 | 5.85↑ | 36.32 | 9.39↑ | 16.66 | 7.23 |
YOLOv8 | 96.24 | 2.34↑ | 72.35 | 4.06↑ | 36.60 | 8.55↑ | 28.81 | 11.17 |
Vision Transformer | 96.07 | 2.52↑ | 71.96 | 4.63↑ | 36.42 | 9.09↑ | 17.67 | 14.67 |
Swin Transformer | 96.29 | 2.28↑ | 72.54 | 3.79↑ | 36.57 | 8.64↑ | 41.53 | 49.94 |
TPH-YOLOv5 | 96.43 | 2.14↑ | 73.27 | 2.76↑ | 37.17 | 6.89↑ | 36.50 | 41.91 |
MSH-YOLOv8 | 98.49 | \ | 75.29 | \ | 39.73 | \ | 24.63 | 26.93 |
Table 7
Multi-scale testing and evaluation results of various sub-models in MSH-YOLOv8
模型 | 输入尺寸 | F 1平均值/% | ||||||
---|---|---|---|---|---|---|---|---|
480 F 1/% | 512 F 1/% | 640 F 1/% | 768 F 1/% | 800 F 1/% | 960 F 1/% | 1 024 F 1/% | ||
MSH1 A | 98.22 | 95.76 | 95.63 | 93.74 | 96.22 | 92.01 | 94.73 | 96.59 |
MSH2 AAAA | 96.75 | 98.52 | 93.25 | 95.88 | 87.05 | 92.16 | 90.77 | 97.12 |
MSH3 AAAAA | 95.88 | 96.92 | 98.49 | 97.32 | 96.94 | 98.33 | 97.84 | 97.45 |
MSH4 AAA | 96.73 | 95.50 | 96.77 | 98.78 | 97.97 | 96.27 | 95.42 | 97.08 |
MSH5 AAAA | 95.87 | 96.76 | 97.26 | 97.04 | 98.25 | 96.35 | 94.09 | 97.14 |
MSH6 AAA | 94.83 | 96.37 | 96.93 | 96.65 | 97.09 | 98.22 | 96.94 | 97.07 |
MSH7 AA | 96.08 | 95.13 | 97.28 | 97.92 | 96.86 | 97.11 | 98.31 | 96.90 |
Table 8
Experimental results of fusion research in MSH-YOLOv8
模型 | AP50/% | AP50(Soft-NMS) /% | APs/% | APs(Soft-NMS) /% |
---|---|---|---|---|
MSH1 | 96.76 | 96.94(0.19↑) | 37.16 | 37.68(1.40↑) |
MSH2 | 97.90 | 98.26(0.37↑) | 38.82 | 39.36(1.39↑) |
MSH3 | 98.49 | 98.63(0.14↑) | 39.73 | 40.23(1.26↑) |
MSH4 | 98.13 | 98.48(0.36↑) | 39.37 | 39.82(1.14↑) |
MSH5 | 97.95 | 98.05(0.10↑) | 38.73 | 39.25(1.34↑) |
MSH6 | 97.71 | 97.92(0.21↑) | 38.65 | 39.16(1.32↑) |
MSH7 | 96.82 | 97.38(0.58↑) | 37.31 | 37.81(1.34↑) |
平均值 | 97.63 | 97.95(0.33↑) | 38.54 | 39.05(1.31↑) |
Ensemble(WBF) | 98.85 | 99.14 | 40.13 | 40.59 |
1 |
|
2 |
刘雨婷. 基于特征融合的小目标检测算法研究[D]. 徐州: 中国矿业大学, 2023.
|
|
|
3 |
|
4 |
|
5 |
|
6 |
|
7 |
|
8 |
|
9 |
|
10 |
|
11 |
|
12 |
|
13 |
|
14 |
|
15 |
|
16 |
|
17 |
张银萍, 朱双杰, 徐燕, 等. 基于机器视觉的猴头菇品质快速无损检测与分级[J]. 现代食品科技, 2023, 39(3): 239-246.
|
|
|
18 |
|
19 |
|
20 |
|
21 |
|
22 |
|
23 |
|
24 |
|
25 |
WOO S,
|
26 |
|
27 |
|
28 |
|
[1] | JI Nan, YIN Yanling, SHEN Weizheng, KOU Shengli, DAI Baisheng, WANG Guowei. Pig Sound Analysis: A Measure of Welfare [J]. Smart Agriculture, 2022, 4(2): 19-35. |
[2] | Fu Yuanyuan, Yang Guijun, Duan Dandan, Zhang Yongtao, Gu Xiaohe, Yang Xiaodong, Xu Xingang, Li Zhenhai. Comparison analysis of spatial and spectral feature in vegetation classification based on AVIRIS hyperspectral image [J]. Smart Agriculture, 2020, 2(1): 68-76. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||