Smart Agriculture ›› 2024, Vol. 6 ›› Issue (5): 128-138.doi: 10.12133/j.smartag.SA202406012
• Technology and Method • Previous Articles Next Articles
LUO Youlu, PAN Yonghao(
), XIA Shunxing, TAO Youzhi
Received:2024-06-25
Online:2024-09-30
Foundation items:Regional Innovation Cooperation Project of the Sichuan Provincial Department of Science and Technology(24QYCX0185); Ya'an Digital Agriculture Engineering Center Construction Project
About author:LUO Youlu, E-mail: 1632373384@qq.com
corresponding author:
CLC Number:
LUO Youlu, PAN Yonghao, XIA Shunxing, TAO Youzhi. Lightweight Apple Leaf Disease Detection Algorithm Based on Improved YOLOv8[J]. Smart Agriculture, 2024, 6(5): 128-138.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202406012
Table 4
Ablation experiments on apple leaf disease object detection
| 试验 | SPD-Conv | MSDA | RepHead | 准确率/% | 召回率/% | mAP50/% | mAP50:95/% | 浮点运算次数FLOPs/ G | 模型大小/MB |
|---|---|---|---|---|---|---|---|---|---|
| 1 | √ | 82.9 | 78.5 | 85.9 | 36.3 | 7.4 | 5.6 | ||
| 2 | √ | 83.6 | 81.7 | 87.3 | 36.6 | 8.4 | 8.3 | ||
| 3 | √ | 84.2 | 78.7 | 86.5 | 35.9 | 8.4 | 8.2 | ||
| 4 | √ | √ | 82.9 | 83.0 | 87.7 | 37.7 | 7.9 | 5.9 | |
| 5 | √ | √ | 81.9 | 80.4 | 86.7 | 36.6 | 7.7 | 7.6 | |
| 6 | √ | √ | 84.0 | 80.1 | 87.5 | 37.0 | 8.8 | 8.6 | |
| 7 | √ | √ | √ | 83.1 | 80.2 | 88.2 | 37.0 | 8.0 | 7.8 |
Table 5
Experimental results of apple leaf disease detection using different network models
| 模型 | 准确率/% | 召回率/% | mAP50/% | mAP50:95/% | 浮点运算次数FLOPs/G | 模型大小/MB | 参数量/M |
|---|---|---|---|---|---|---|---|
| YOLOv8n-SMR | 83.1 | 80.2 | 88.2 | 37.0 | 8.0 | 7.8 | 3.7 |
| YOLOv9-c | 83.8 | 81.0 | 86.9 | 36.8 | 102.3 | 51.6 | 25.5 |
| YOLOv7-tiny | 82.8 | 81.8 | 86.8 | 34.2 | 13.2 | 12.3 | 6.0 |
| RetinaNet | 78.3 | 78.2 | 80.4 | 33.0 | 191.4 | 139.0 | 36.3 |
| Faster-RCNN | 73.5 | 74.3 | 76.6 | 31.4 | 370.2 | 108.0 | 136.7 |
Table 8
Model training results before and after data class balancing in apple leaf disease detection
| 类别 | 准确率 (平衡前) | 准确率 (平衡后) | 召回率 (平衡前) | 召回率 (平衡后) | mAP50 (平衡前) | mAP50 (平衡后) | mAP50:95 (平衡前) | mAP50:95 (平衡后) |
|---|---|---|---|---|---|---|---|---|
| 总体 | 83.1 | 85.8 | 80.2 | 83.6 | 88.2 | 88.9 | 37.0 | 39.4 |
| 褐纹病 | 91.3 | 90.2 | 86.6 | 95.7 | 96.2 | 97.1 | 39.2 | 50.3 |
| 褐腐病 | 79.9 | 92.2 | 85.6 | 82.5 | 89.9 | 93.4 | 39.6 | 39.2 |
| 黑星病 | 74.7 | 77.3 | 62.7 | 69.9 | 74.8 | 76.6 | 30.8 | 32.0 |
| 锈病 | 86.5 | 83.5 | 85.7 | 86.2 | 91.9 | 88.7 | 38.4 | 36.3 |
| 1 |
田有文, 程怡, 王小奇, 等. 基于高光谱成像的苹果虫害检测特征向量的选取[J]. 农业工程学报, 2014, 30(12): 132-139.
|
|
|
|
| 2 |
|
| 3 |
王帅, 王利众, 朱丽平, 等. 基于改进YOLOv5s的苹果病害检测技术研究[J]. 山西农业大学学报(自然科学版), 2024, 44(4): 118-129.
|
|
|
|
| 4 |
王君婵, 洪俐, 朱少龙, 等. 基于深度学习的病害识别方法研究[J]. 农业展望, 2023, 19(8): 90-99.
|
|
|
|
| 5 |
|
| 6 |
WOO S,
|
| 7 |
|
| 8 |
|
| 9 |
|
| 10 |
|
| 11 |
|
| 12 |
|
| 13 |
|
| 14 |
|
| 15 |
|
| 16 |
陆丽娜, 于啸. 深度学习在大豆叶片图像数据管理中的识别与分类研究[J].农业图书情报学报,2023,35(2):87-94.
|
|
|
|
| 17 |
|
| 18 |
|
| 19 |
|
| 20 |
|
| 21 |
|
| 22 |
|
| 23 |
石展鲲, 杨风, 韩建宁, 等. 基于Faster-RCNN的自然环境下苹果识别[J]. 计算机与现代化, 2023(2): 62-65.
|
|
|
|
| 24 |
|
| 25 |
杨锋, 姚晓通. 基于改进YOLOv8的小麦叶片病虫害检测轻量化模型[J].智慧农业(中英文), 2024, 6(1): 147-157.
|
|
|
|
| 26 |
郑宇达, 陈仁凡, 杨长才, 等. 基于改进YOLOv5s模型的柑橘病虫害识别方法[J]. 华中农业大学学报, 2024, 43(2): 134-143.
|
|
|
|
| 27 |
陈禹, 吴雪梅, 张珍, 等. 基于改进YOLOv5s的自然环境下茶叶病害识别方法[J]. 农业工程学报, 2023, 39(24): 185-194.
|
|
|
| [1] | LI Ruijie, WANG Aidong, WU Huaxing, LI Ziqiu, FENG Xiangqian, HONG Weiyuan, TANG Xuejun, QIN Jinhua, WANG Danying, CHU Guang, ZHANG Yunbo, CHEN Song. Remote Sensing for Rice Growth Stages Monitoring: Research Progress, Bottleneck Problems and Technical Optimization Paths [J]. Smart Agriculture, 2025, 7(3): 89-107. |
| [2] | HAN Yu, QI Kangkang, ZHENG Jiye, LI Jinai, JIANG Fugui, ZHANG Xianglun, YOU Wei, ZHANG Xia. Lightweight Cattle Facial Recognition Method Based on Improved YOLOv11 [J]. Smart Agriculture, 2025, 7(3): 173-184. |
| [3] | MA Liu, MAO Kebiao, GUO Zhonghua. Defogging Remote Sensing Images Method Based on a Hybrid Attention-Based Generative Adversarial Network [J]. Smart Agriculture, 2025, 7(2): 172-182. |
| [4] | XU Shiwei, LI Qianchuan, LUAN Rupeng, ZHUANG Jiayu, LIU Jiajia, XIONG Lu. Agricultural Market Monitoring and Early Warning: An Integrated Forecasting Approach Based on Deep Learning [J]. Smart Agriculture, 2025, 7(1): 57-69. |
| [5] | GONG Yu, WANG Ling, ZHAO Rongqiang, YOU Haibo, ZHOU Mo, LIU Jie. Tomato Growth Height Prediction Method by Phenotypic Feature Extraction Using Multi-modal Data [J]. Smart Agriculture, 2025, 7(1): 97-110. |
| [6] | QI Zijun, NIU Dangdang, WU Huarui, ZHANG Lilin, WANG Lunfeng, ZHANG Hongming. Chinese Kiwifruit Text Named Entity Recognition Method Based on Dual-Dimensional Information and Pruning [J]. Smart Agriculture, 2025, 7(1): 44-56. |
| [7] | ZHANG Hui, HU Jun, SHI Hang, LIU Changxi, WU Miao. Precision Target Spraying System Integrated with Remote Deep Learning Recognition Model for Cabbage Plant Centers [J]. Smart Agriculture, 2024, 6(6): 85-95. |
| [8] | LU Bibo, LIANG Di, YANG Jie, SONG Aiqing, HUANGFU Shangwei. Image Segmentation Method of Chinese Yam Leaves in Complex Background Based on Improved ENet [J]. Smart Agriculture, 2024, 6(6): 109-120. |
| [9] | CHEN Junlin, ZHAO Peng, CAO Xianlin, NING Jifeng, YANG Shuqin. Lightweight YOLOv8s-Based Strawberry Plug Seedling Grading Detection and Localization via Channel Pruning [J]. Smart Agriculture, 2024, 6(6): 132-143. |
| [10] | LI Hongbo, TIAN Xin, RUAN Zhiwen, LIU Shaowen, REN Weiqi, SU Zhongbin, GAO Rui, KONG Qingming. Seedling Stage Corn Line Detection Method Based on Improved YOLOv8 [J]. Smart Agriculture, 2024, 6(6): 72-84. |
| [11] | LIU Chang, SUN Yu, YANG Jing, WANG Fengchao, CHEN Jin. Grape Recognition and Localization Method Based on 3C-YOLOv8n and Depth Camera [J]. Smart Agriculture, 2024, 6(6): 121-131. |
| [12] | CUI Jiale, ZENG Xiangfeng, REN Zhengwei, SUN Jian, TANG Chen, YANG Wanneng, SONG Peng. Detection Method of Effective Tillering of Rice in Field Based on Lightweight Ghost-YOLOv8 and Smart Phone [J]. Smart Agriculture, 2024, 6(5): 98-107. |
| [13] | LIU Yi, ZHANG Yanjun. ReluformerN: Lightweight High-Low Frequency Enhanced for Hyperspectral Agricultural Lancover Classification [J]. Smart Agriculture, 2024, 6(5): 74-87. |
| [14] | NIAN Yue, ZHAO Kaixuan, JI Jiangtao. Cow Hoof Slippage Detecting Method Based on Enhanced DeepLabCut Model [J]. Smart Agriculture, 2024, 6(5): 153-163. |
| [15] | ZHANG Yanqi, ZHOU Shuo, ZHANG Ning, CHAI Xiujuan, SUN Tan. A Regional Farming Pig Counting System Based on Improved Instance Segmentation Algorithm [J]. Smart Agriculture, 2024, 6(4): 53-63. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||