Welcome to Smart Agriculture 中文

Content of Overview Article in our journal

        Published in last 1 year |  In last 2 years |  In last 3 years |  All
    Please wait a minute...
    For Selected: Toggle Thumbnails
    Artificial Intelligence-Driven High-Quality Development of New-Quality Productivity in Animal Husbandry: Restraining Factors, Generation Logic and Promotion Paths
    LIU Jifang, ZHOU Xiangyang, LI Min, HAN Shuqing, GUO Leifeng, CHI Liang, YANG Lu, WU Jianzhai
    Smart Agriculture    2025, 7 (1): 165-177.   DOI: 10.12133/j.smartag.SA202407010
    Abstract1063)   HTML15)    PDF(pc) (1692KB)(194)       Save

    [Significance] Developing new-quality productivity is of great significance for promoting high-quality development of animal husbandry. However, there is currently limited research on new-quality productivity in animal husbandry, and there is a lack of in-depth analysis on its connotation, characteristics, constraints, and promotion path. [Progress] This article conducts a systematic study on the high-quality development of animal husbandry productivity driven by artificial intelligence. The new-quality productivity of animal husbandry is led by cutting-edge technological innovations such as biotechnology, information technology, and green technology, with digitalization, greening, and ecologicalization as the direction of industrial upgrading. Its basic connotation is manifested as higher quality workers, more advanced labor materials, and a wider range of labor objects. Compared with traditional productivity, the new-quality productivity of animal husbandry is an advanced productivity guided by technological innovation, new development concepts, and centered on the improvement of total factor productivity. It has significant characteristics of high production efficiency, good industrial benefits, and strong sustainable development capabilities. China's new-quality productivity in animal husbandry has a good foundation for development, but it also faces constraints such as insufficient innovation in animal husbandry breeding technology, weak core competitiveness, low mechanization rate of animal husbandry, weak independent research and development capabilities of intelligent equipment, urgent demand for "machine replacement", shortcomings in the quantity and quality of animal husbandry talents, low degree of scale of animal husbandry, and limited level of intelligent management. Artificial intelligence in animal husbandry can be widely used in environmental control, precision feeding, health monitoring and disease prevention and control, supply chain optimization and other fields. Artificial intelligence, through revolutionary breakthroughs in animal husbandry technology represented by digital technology, innovative allocation of productivity factors in animal husbandry linked by data elements, and innovative allocation of productivity factors in animal husbandry adapted to the digital economy, has given birth to new-quality productivity in animal husbandry and empowered the high-quality development of animal husbandry. [Conclusions and Prospects] This article proposes a path to promote the development of new-quality productivity in animal husbandry by improving the institutional mechanism of artificial intelligence to promote the development of modern animal husbandry industry, strengthening the application of artificial intelligence in animal husbandry technology innovation and promotion, and improving the management level of artificial intelligence in the entire industry chain of animal husbandry.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Research Progress and Prospects of Key Navigation Technologies for Facility Agricultural Robots
    HE Yong, HUANG Zhenyu, YANG Ningyuan, LI Xiyao, WANG Yuwei, FENG Xuping
    Smart Agriculture    2024, 6 (5): 1-19.   DOI: 10.12133/j.smartag.SA202404006
    Abstract1193)   HTML294)    PDF(pc) (2130KB)(4031)       Save

    [Significance] With the rapid development of robotics technology and the persistently rise of labor costs, the application of robots in facility agriculture is becoming increasingly widespread. These robots can enhance operational efficiency, reduce labor costs, and minimize human errors. However, the complexity and diversity of facility environments, including varying crop layouts and lighting conditions, impose higher demands on robot navigation. Therefore, achieving stable, accurate, and rapid navigation for robots has become a key issue. Advanced sensor technologies and algorithms have been proposed to enhance robots' adaptability and decision-making capabilities in dynamic environments. This not only elevates the automation level of agricultural production but also contributes to more intelligent agricultural management. [Progress] This paper reviews the key technologies of automatic navigation for facility agricultural robots. It details beacon localization, inertial positioning, simultaneous localization and mapping (SLAM) techniques, and sensor fusion methods used in autonomous localization and mapping. Depending on the type of sensors employed, SLAM technology could be subdivided into vision-based, laser-based and fusion systems. Fusion localization is further categorized into data-level, feature-level, and decision-level based on the types and stages of the fused information. The application of SLAM technology and fusion localization in facility agriculture has been increasingly common. Global path planning plays a crucial role in enhancing the operational efficiency and safety of facility aricultural robots. This paper discusses global path planning, classifying it into point-to-point local path planning and global traversal path planning. Furthermore, based on the number of optimization objectives, it was divided into single-objective path planning and multi-objective path planning. In regard to automatic obstacle avoidance technology for robots, the paper discusses sevelral commonly used obstacle avoidance control algorithms commonly used in facility agriculture, including artificial potential field, dynamic window approach and deep learning method. Among them, deep learning methods are often employed for perception and decision-making in obstacle avoidance scenarios. [Conclusions and Prospects] Currently, the challenges for facility agricultural robot navigation include complex scenarios with significant occlusions, cost constraints, low operational efficiency and the lack of standardized platforms and public datasets. These issues not only affect the practical application effectiveness of robots but also constrain the further advancement of the industry. To address these challenges, future research can focus on developing multi-sensor fusion technologies, applying and optimizing advanced algorithms, investigating and implementing multi-robot collaborative operations and establishing standardized and shared data platforms.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Orchard-Wide Visual Perception and Autonomous Operation of Fruit Picking Robots: A Review
    CHEN Mingyou, LUO Lufeng, LIU Wei, WEI Huiling, WANG Jinhai, LU Qinghua, LUO Shaoming
    Smart Agriculture    2024, 6 (5): 20-39.   DOI: 10.12133/j.smartag.SA202405022
    Abstract822)   HTML147)    PDF(pc) (4030KB)(3962)       Save

    [Significance] Fruit-picking robot stands as a crucial solution for achieving intelligent fruit harvesting. Significant progress has been made in developing foundational methods for picking robots, such as fruit recognition, orchard navigation, path planning for picking, and robotic arm control, the practical implementation of a seamless picking system that integrates sensing, movement, and picking capabilities still encounters substantial technical hurdles. In contrast to current picking systems, the next generation of fruit-picking robots aims to replicate the autonomous skills exhibited by human fruit pickers. This involves effectively performing ongoing tasks of perception, movement, and picking without human intervention. To tackle this challenge, this review delves into the latest research methodologies and real-world applications in this field, critically assesses the strengths and limitations of existing methods and categorizes the essential components of continuous operation into three sub-modules: local target recognition, global mapping, and operation planning. [Progress] Initially, the review explores methods for recognizing nearby fruit and obstacle targets. These methods encompass four main approaches: low-level feature fusion, high-level feature learning, RGB-D information fusion, and multi-view information fusion, respectively. Each of these approaches incorporates advanced algorithms and sensor technologies for cluttered orchard environments. For example, low-level feature fusion utilizes basic attributes such as color, shapes and texture to distinguish fruits from backgrounds, while high-level feature learning employs more complex models like convolutional neural networks to interpret the contextual relationships within the data. RGB-D information fusion brings depth perception into the mix, allowing robots to gauge the distance to each fruit accurately. Multi-view information fusion tackles the issue of occlusions by combining data from multiple cameras and sensors around the robot, providing a more comprehensive view of the environment and enabling more reliable sensing. Subsequently, the review shifts focus to orchard mapping and scene comprehension on a broader scale. It points out that current mapping methods, while effective, still struggle with dynamic changes in the orchard, such as variations of fruits and light conditions. Improved adaptation techniques, possibly through machine learning models that can learn and adjust to different environmental conditions, are suggested as a way forward. Building upon the foundation of local and global perception, the review investigates strategies for planning and controlling autonomous behaviors. This includes not only the latest advancements in devising movement paths for robot mobility but also adaptive strategies that allow robots to react to unexpected obstacles or changes within the whole environment. Enhanced strategies for effective fruit picking using the Eye-in-Hand system involve the development of more dexterous robotic hands and improved algorithms for precisely predicting the optimal picking point of each fruit. The review also identifies a crucial need for further advancements in the dynamic behavior and autonomy of these technologies, emphasizing the importance of continuous learning and adaptive control systems to improve operational efficiency in diverse orchard environments. [Conclusions and Prospects] The review underscores the critical importance of coordinating perception, movement, and picking modules to facilitate the transition from a basic functional prototype to a practical machine. Moreover, it emphasizes the necessity of enhancing the robustness and stability of core algorithms governing perception, planning, and control, while ensuring their seamless coordination which is a central challenge that emerges. Additionally, the review raises unresolved questions regarding the application of picking robots and outlines future trends, include deeper integration of stereo vision and deep learning, enhanced global vision sampling, and the establishment of standardized evaluation criteria for overall operational performance. The paper can provide references for the eventual development of robust, autonomous, and commercially viable picking robots in the future.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    The Path of Smart Agricultural Technology Innovation Leading Development of Agricultural New Quality Productivity
    CAO Bingxue, LI Hongfei, ZHAO Chunjiang, LI Jin
    Smart Agriculture    2024, 6 (4): 116-127.   DOI: 10.12133/j.smartag.SA202405004
    Abstract1125)   HTML205)    PDF(pc) (1102KB)(2356)       Save

    [Significance] Building the agricultural new quality productivity is of great significance. It is the advanced quality productivity which realizes the transformation, upgrading, and deep integration of substantive, penetrating, operational, and media factors, and has outstanding characteristics such as intelligence, greenness, integration, and organization. As a new technology revolution in the field of agriculture, smart agricultural technology transforms agricultural production mode by integrating agricultural biotechnology, agricultural information technology, and smart agricultural machinery and equipment, with information and knowledge as important core elements. The inherent characteristics of "high-tech, high-efficiency, high-quality, and sustainable" in agricultural new quality productivity are fully reflected in the practice of smart agricultural technology innovation. And it has become an important core and engine for promoting the agricultural new quality productivity. [Progress] Through literature review and theoretical analysis, this article conducts a systematic study on the practical foundation, internal logic, and problem challenges of smart agricultural technology innovation leading the development of agricultural new quality productivity. The conclusions show that: (1) At present, the global innovation capability of smart agriculture technology is constantly enhancing, and significant technology breakthroughs have been made in fields such as smart breeding, agricultural information perception, agricultural big data and artificial intelligence, smart agricultural machinery and equipment, providing practical foundation support for leading the development of agricultural new quality productivity. Among them, the smart breeding of 'Phenotype+Genotype+Environmental type' has entered the fast lane, the technology system for sensing agricultural sky, air, and land information is gradually maturing, the research and exploration on agricultural big data and intelligent decision-making technology continue to advance, and the creation of smart agricultural machinery and equipment for different fields has achieved fruitful results; (2) Smart agricultural technology innovation provides basic resources for the development of agricultural new quality productivity through empowering agricultural factor innovation, provides sustainable driving force for the development of agricultural new quality productivity through empowering agricultural technology innovation, provides practical paradigms for the development of agricultural new quality productivity through empowering agricultural scenario innovation, provides intellectual support for the development of agricultural new quality productivity through empowering agricultural entity innovation, and provides important guidelines for the development of agricultural new quality productivity through empowering agricultural value innovation; (3) Compared to the development requirements of agricultural new quality productivity in China and the advanced level of international smart agriculture technology, China's smart agriculture technology innovation is generally in the initial stage of multi-point breakthroughs, system integration, and commercial application. It still faces major challenges such as an incomplete policy system for technology innovation, key technologies with bottlenecks, blockages and breakpoints, difficulties in the transformation and implementation of technology achievements, and incomplete support systems for technology innovation. [Conclusions and Prospects] Regarding the issue of technology innovation in smart agriculture, this article proposes the 'Four Highs' path of smart agriculture technology innovation to fill the gaps in smart agriculture technology innovation and accelerate the formation of agricultural new quality productivity in China. The "Four Highs" path specifically includes the construction of high-energy smart agricultural technology innovation platforms, the breakthroughs in high-precision and cutting-edge smart agricultural technology products, the creation of high-level smart agricultural application scenarios, and the cultivation of high-level smart agricultural innovation talents. Finally, this article proposes four strategic suggestions such as deepening the understanding of smart agriculture technology innovation and agricultural new quality productivity, optimizing the supply of smart agriculture technology innovation policies, building a national smart agriculture innovation development pilot zone, and improving the smart agriculture technology innovation ecosystem.

    Table and Figures | Reference | Related Articles | Metrics | Comments0