1 |
Kang H, Chen C. Fruit detection and segmentation for apple harvesting using visual sensor in orchards[J]. Sensors, 2019, 19(20): 4599-4614.
|
2 |
王丹丹, 何东健. 基于R-FCN深度卷积神经网络的机器人疏果前苹果目标的识别[J]. 农业工程学报, 2019, 35(3): 156-163.
|
|
Wang D, He D. Recognition of apple targets before fruits thinning by robot based on R-FCN deep convolution neural network[J]. Transactions of the CSAE, 2019, 35(3): 156-163.
|
3 |
赵德安, 吴任迪, 刘晓洋,等. 基于YOLO深度卷积神经网络的复杂背景下机器人采摘苹果定位[J]. 农业工程学报, 2019, 35(3): 164-173.
|
|
Zhao D, Wu R, Liu X, et al. Apple positioning based on YOLO deep convolutional neural network for picking robot in complex background[J]. Transactions of the CSAE, 2019, 35(3): 164-173.
|
4 |
Gené-Mola J, Vilaplana V, Rosell-Polo J R, et al. Multi-modal deep learning for Fuji apple detection using RGB-D cameras and their radiometric capabilities[J]. Computers and Electronics in Agriculture, 2019, 162: 689-698.
|
5 |
Underwood J P, Hung C, Whelan B, et al. Mapping almond orchard canopy volume, flowers, fruit and yield using LiDAR and vision sensors[J]. Computers and Electronics in Agriculture, 2016, 130: 83-96.
|
6 |
Bargoti S, Underwood J P. Image segmentation for fruit detection and yield estimation in apple orchards[J]. Journal of Field Robotics, 2017, 34(6): 1039-1060.
|
7 |
Silwal A, Gongal A, Karkee M. Apple identification in field environment with over the row machine vision system[J]. Agricultural Engineering International: CIGR Journal, 2014, 16(4): 66-75.
|
8 |
Wachs J P, Stern H I, Burks T, et al. Low and high-level visual feature-based apple detection from multi-modal images[J]. Precision Agriculture, 2010, 11(6): 717-735.
|
9 |
Qureshi W S, Payne A, Walsh K B, et al. Machine vision for counting fruit on mango tree canopies[J]. Precision Agriculture, 2017, 18(2): 224-244.
|
10 |
Zhou R, Damerow L, Sun Y, et al. Using colour features of cv.‘Gala’ apple fruits in an orchard in image processing to predict yield[J]. Precision Agriculture, 2012, 13(5): 568-580.
|
11 |
Wang Q, Nuske S, Bergerman M, et al. Automated crop yield estimation for apple orchards[C]// Experimental Robotics. Heidelberg: Springer, 2013: 745-758.
|
12 |
Xiong J, Liu Z, Lin R, et al. Green grape detection and picking-point calculation in a night-time natural environment using a charge-coupled device (ccd) vision sensor with artificial illumination[J]. Sensors, 2018, 18(4): 969-986.
|
13 |
Wang D, He D, Song H, et al. Combining SUN-based visual attention model and saliency contour detection algorithm for apple image segmentation[J]. Multimedia Tools and Applications, 2019, (78): 17391-17411.
|
14 |
Gongal A, Amatya S, Karkee M, et al. Sensors and systems for fruit detection and localization: A review[J]. Computers and Electronics in Agriculture, 2015, 116: 8-19.
|
15 |
Song Y, Glasbey C A, Horgan G W, et al. Automatic fruit recognition and counting from multiple images[J]. Biosystems Engineering, 2014, (118): 203-215.
|
16 |
Luo L, Tang Y, Zou X, et al. Robust grape cluster detection in a vineyard by combining the AdaBoost framework and multiple color components[J]. Sensors, 2016, 16(12): 2098-2118.
|
17 |
Wang C, Lee W S, Zou X, et al. Detection and counting of immature green citrus fruit based on the local binary patterns (lbp) feature using illumination-normalized images[J]. Precision Agriculture, 2018, 19(6): 1062-1083.
|
18 |
Guo Q, Chen Y, Tang Y, et al. Lychee fruit detection based on monocular machine vision in orchard environment[J]. Sensors, 2019, 19: no.4091.
|
19 |
Kestur R, Meduri A, Narasipura O. MangoNet: A deep semantic segmentation architecture for a method to detect and count mangoes in an open orchard[J]. Engineering Applications of Artificial Intelligence, 2019, 77: 59-69.
|
20 |
Szegedy C, Ioffe S, Vanhoucke V, et al. Inception-v4, inception-resnet and the impact of residual connections on learning[C]// Thirty-First AAAI Conference on Artificial Intelligence, 2017: 1-12.
|
21 |
Liu W, Wang Z, Liu X, et al. A survey of deep neural network architectures and their applications[J]. Neurocomputing, 2017, 234: 11-26.
|
22 |
Sa I, Ge Z, Dayoub F, et al. Deepfruits: a fruit detection system using deep neural networks[J]. Sensors, 2016, 16(8): 1222-1245.
|
23 |
Yu Y, Zhang K, Yang L, et al. Fruit detection for strawberry harvesting robot in non-structural environment based on Mask-RCNN[J]. Computers and Electronics in Agriculture, 2019, (163): 104846-104855.
|
24 |
陈桂芬, 赵姗, 曹丽英, 等. 基于迁移学习与卷积神经网络的玉米植株病害识别[J]. 智慧农业, 2019, 1(2): 34-44.
|
|
Chen G, Zhao S, Cao L, et al. Corn plant disease recognition based on migration learning and convolutional neural network[J]. Smart Agriculture, 2019, 1(2): 34-44.
|
25 |
Tian Y, Yang G, Wang Z, et al. Apple detection during different growth stages in orchards using the improved YOLO-V3 model[J]. Computers and Electronics in Agriculture, 2019, (157): 417-426.
|
26 |
Koirala A, Walsh K B, Wang Z, et al. Deep learning for real-time fruit detection and orchard fruit load estimation: Benchmarking of ‘MangoYOLO’[J]. Precision Agriculture, 2019, (20): 1107-1135.
|
27 |
Williams H A M, Jones M H, Nejati M, et al. Robotic kiwifruit harvesting using machine vision, convolutional neural networks, and robotic arms[J]. Biosystems Engineering, 2019, (181): 140-156.
|
28 |
Wang D, Zhang N, Sun X, et al. AFP-Net: Realtime Anchor-Free Polyp Detection in Colonoscopy[C]// 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI). IEEE, 2019.
|
29 |
Law H, Deng J. Cornernet: Detecting objects as paired keypoints[C]// Proceedings of the European Conference on Computer Vision (ECCV), 2018: 734-750.
|
30 |
Duan K, Bai S, Xie L, et al. Centernet: Keypoint triplets for object detection[C]// Proceedings of the IEEE International Conference on Computer Vision. 2019: 6569-6578.
|
31 |
Zhou X, Zhuo J, Krahenbuhl P. Bottom-up object detection by grouping extreme and center points[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2019: 850-859.
|
32 |
Zhou X, Wang D, Krähenbühl P. Objects as Points[J]. Cornell University, 2019, arXiv: 1904. 07850.
|
33 |
Howard A, Sandler M, Chu G, et al. Searching for mobilenetv3[J]. Cornell University, 2019, arXiv: 1905. 02244.
|
34 |
郑冬, 李向群, 许新征. 基于轻量化 SSD 的车辆及行人检测网络[J]. 南京师大学报 (自然科学版), 2019, 42(1): 73-81.
|
|
Zheng D, Li X, Xu X. Vehicle and pedestrian detection model based on lightweight SSD[J]. Journal of Nanjing Normal University (Natural Science Edition). 2019, 42(1): 73-81.
|
35 |
白傑, 郝培涵, 陈思汉. 用轻量化卷积神经网络图像语义分割的交通场景理解[J]. 汽车安全与节能学报, 2018, 9(4): 433-440.
|
|
Bai J, Hao P, Chen S. Traffic scene understanding using image semantic segmentation with an improved lightweight convolutional-neural-network[J]. Journal of Automotive Safety and Energy. 2018, 9(4): 433-440.
|
36 |
毕鹏程, 罗健欣, 陈卫卫. 轻量化卷积神经网络技术研究[J]. 计算机工程与应用, 2019, 55(16): 25-35.
|
|
Bi P, Luo J, Chen W. Research on lightweight convolutional neural network technology[J]. Computer Engineering and Applications. 2019, 55(16): 25-35.
|
37 |
Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2018: 7132-7141.
|
38 |
Lin T Y, Maire M, Belongie S, et al. Microsoft coco: common objects in context[C]// European Conference on Computer Vision. Springer, Cham, 2014: 740-755.
|