Smart Agriculture ›› 2021, Vol. 3 ›› Issue (3): 94-115.doi: 10.12133/j.smartag.2021.3.3.202102-SA002
朱荣胜1(), 李帅2, 孙永哲2, 曹阳杨2, 孙凯2, 郭益鑫2, 姜伯峰2, 王雪莹2, 李杨1, 张战国1, 辛大伟3, 胡振帮3, 陈庆山3(
)
收稿日期:
2021-02-01
修回日期:
2021-09-20
出版日期:
2021-06-30
发布日期:
2021-12-06
基金资助:
作者简介:
朱荣胜(1975—),男,博士,副教授,研究方向为作物表型组学。E-mail:通讯作者:
陈庆山
E-mail:rshzhu@126.com;qshchen@126.com
ZHU Rongsheng1(), LI Shuai2, SUN Yongzhe2, CAO Yangyang2, SUN Kai2, GUO Yixin2, JIANG Bofeng2, WANG Xueying2, LI Yang1, ZHANG Zhanguo1, XIN Dawei3, HU Zhenbang3, CHEN Qingshan3(
)
Received:
2021-02-01
Revised:
2021-09-20
Online:
2021-06-30
Published:
2021-12-06
corresponding author:
CHEN Qingshan
E-mail:rshzhu@126.com;qshchen@126.com
摘要:
近年来,随着无人机和各类传感器在作物育种和田间生产中被广泛使用,作物表型组学得到了极大的发展。兼具了高精度、高通量和高度自动化的作物表型组学及其相关技术的发展,加快了新品种的选育和优化了田间管理。作物三维重构技术是作物表型组学最基本的技术方法之一,是精准描述作物形态全息结构的重要工具,而作物的三维重构模型对于高通量作物表型获取、作物株型特征评价、植株结构和表型相关性分析等均具有重要意义。为深入总结作物表型中三维重构技术研究进展,本文从作物三维重构的基本方法与应用特点、研究现状和前景展望等三个方面展开综述。本文首先归纳整理了现有作物三维重构方法,并对各类方法的基本原理进行了综述,分析了各类方法的特点和优缺点,同时在归纳作物三维重构方法一般性流程的基础上,对各类方法的适用性进行剖析,归纳整理出了各类方法在实施时的具体流程和注意事项;其次,本文依据研究目标对象不同将作物三维重构的应用分为单株作物重构、田间群体重构和根系重构三部分,并从这三个视角对作物三维重构技术的应用情况进行了综述,依据精度、速度和成本三方面,探究了各个方法对于不同作物三维重构的研究现状,分析整理出不同重构对象背景下作物三维重构存在的问题与挑战;最后,从作物三维重构全程自动化、4D表型的构成、作物虚拟生长与模拟育种和智慧农业发展等方面对作物三维重构技术的前景进行了展望。
中图分类号:
朱荣胜, 李帅, 孙永哲, 曹阳杨, 孙凯, 郭益鑫, 姜伯峰, 王雪莹, 李杨, 张战国, 辛大伟, 胡振帮, 陈庆山. 作物三维重构技术研究现状及前景展望[J]. 智慧农业(中英文), 2021, 3(3): 94-115.
ZHU Rongsheng, LI Shuai, SUN Yongzhe, CAO Yangyang, SUN Kai, GUO Yixin, JIANG Bofeng, WANG Xueying, LI Yang, ZHANG Zhanguo, XIN Dawei, HU Zhenbang, CHEN Qingshan. Research Advances and Prospects of Crop 3D Reconstruction Technology[J]. Smart Agriculture, 2021, 3(3): 94-115.
表3
单株作物三维重构相关研究
作物 | 采样设备和方法 | 重构方法 | 优缺点 | 参考文献 |
---|---|---|---|---|
玉米 | 单反相机 | SFM算法、SIFT算法、SVM算法 | A2、B2 | Zhu等(2020)[ |
三维扫描仪 | Kinect | A3、B3 | 方志力等(2017)[ | |
三维扫描仪 | LiDAR、LabVIEW程序 | A3、B3 | Thapa等(2018)[ | |
三维扫描仪 | Geomagic Studio 2014、DoN法线差分算法 | A3、B3 | 苏伟等(2019)[ | |
三维扫描仪 | 扫描仪、Gemomagic Spark | A3、B3 | 李抒昊等(2018)[ | |
三维扫描仪 | 扫描仪、三角剖分法 | A3、B3 | 王勇健等(2014)[ | |
三维扫描仪 | Alpha-Shape算法、移动立方体算法 | A3、B3 | 刘睿等(2014)[ | |
三维扫描仪 | B样条曲线、多直线分裂算法 | A3、B3 | 肖伯祥等(2007)[ | |
双目视觉系统 | 双三次B 样条曲线 | A2、B2 | 李辉(2016)[ | |
双目视觉系统 | Cardinal 样条插值函数 | A2、B2 | 王传宇等(2010)[ | |
多目立体视觉 | MVS- Pheno平台 | A2、B2 | Wu等(2020)[ | |
三维数字化仪、激光雷达 | VC++、OpenGL库 | A4、B4 | 程锦和劳彩莲(2009)[ | |
手持式的FastSCAN扫描仪 | 基于网格方法的自适应密度三维点云简化方法和玉米植株双边滤波算法 | A3、B3 | Ma等(2019)[ | |
大豆 | 单反相机 | 3DSOM、MATLAB拟合 | A2、B2 | Zhu等(2020)[ |
数码相机 | 三次样条曲线、L系统 | A2、B2 | 宋祺鹏等(2017)[ | |
人工测量 | MATLAB拟合、L系统 | A1、B1 | 刘占凤等(2008)[ | |
三维扫描仪 | 三次样条曲线、Delaunay三角剖分 | A3、B3 | 谢秋菊等(2011)[ | |
人工测量 | MATLAB拟合、L系统 | A1、B1 | 郑萍等(2006)[ | |
小麦 | 单反相机 | SIFT算法、SFM算法、MVS算法 | A2、B2 | 史维杰等(2019)[ |
单反相机 | MVS-SFM算法 | A2、B2 | Duan等(2016)[ | |
工业相机 | 3DSOM、GPU、OpenCV | A2、B2 | Fang等(2016)[ | |
相机拍摄 | 边缘检测、生长曲线约束 | A2、B2 | 胡少军等(2007)[ | |
人工测量 | 非均值有理 B 样条、OpenGL库 | A1、B1 | 李书钦(2017)[ | |
人工测量 | 形态模型、NURBS曲面、OpenGL库 | A1、B1 | 李书钦等(2016)[ | |
人工测量 | NURSS曲面 | A1、B1 | 李书钦等(2016)[ | |
人工测量 | 生长模型、VC++、OpenGL库 | A1、B1 | Zhang等(2012)[ | |
三维扫描仪 | 离散平滑D2-样条曲面拟合 | A3、B3 | Kempthorne等(2015)[ | |
棉花 | 双目视觉系统 | SIFT 算法 | A2、B2 | 柏月等(2017)[ |
双目视觉系统 | OpenCV、Adaboost算法、SIFT 算法 | A2、B2 | 韩大龙(2014)[ | |
人工测量 | NURBS曲面、VC++、OpenGL 库 | A1、B1 | 杨娟等(2006)[ | |
三维扫描仪 | LiDAR 和 RTK-GPS | A3、B3 | Sun等(2018)[ | |
人工测量 | COTGROW模型、GroIMP平台 | A1、B1 | 陈超等[ | |
水稻 | 单反相机 | SFM算法、CMVS算法、PMVS算法 | A2、B2 | 宋时德等(2017)[ |
激光雷达 | Crop 3D平台 | A1、B3 | Guo等(2017)[ | |
Light Stage平台 | 计算机视觉、移动立方体算法 | A1、B3 | 孟耀华等(2014)[ | |
人工测量 | 形态模型、VC++、OpenGL 库 | A1、B1 | 何火娇等(2009)[ | |
人工测量 | 生长模型、生长度日(GDD)、VC++ | A1、B1 | 徐其军等(2010)[ | |
平板扫描仪 | 样条曲线 | A3、B3 | 汪丽萍等(2017)[ | |
相机拍摄 | 3DSOM | A2、B2 | 张楠(2013)[ | |
数字成像系统 | RootReader3D | A3、B3 | Clark等(2011)[ | |
单反相机 | OpenCV、Marching Cubes方法 | A2、B2 | 吴茜(2012)[ | |
油菜 | 三维扫描仪 | Delaunay三角网格化算法 | A3、B3 | 史蒲娟等(2017)[ |
三维扫描仪 | 迭代最近点算法、基于可视化类库VTK | A3、B3 | 方慧等(2013)[ | |
人工测量 | 3次Bézier曲面、L系统 | A1、B1 | 赵丽丽等(2011)[ | |
人工测量 | 生长度日(GDD)、VC++、OpenGL库 | A1、B1 | 岳延滨(2010)[ | |
单目视觉系统 | MVS、SIFT、PMVS算法 | A2、B2 | 史蒲娟等(2017)[ | |
番茄 | 相机拍摄 | hue-invariant模型 | A2、B2 | Ran等(2013)[ |
相机拍摄 | L-系统、Kinect数字化、VC++、OpenGL库 | A2、B2 | 彭永石(2007)[ | |
人工测量 | 悬臂梁弯曲模型、马尔科夫算法、贝塔分布 | A1、B1 | 董乔雪等(2010)[ | |
人工测量、三维扫描仪 | 网格模型、B样条曲线 | A1、B1 | 袁晓敏等(2012)[ | |
人工测量 | L系统公式集、VC++、OpenGL库、Bezier曲面 | A1、B1 | 辛龙娇等(2014)[ | |
草莓 | PMD深度相机、彩色相机 | 深度信息步进方法、Harris算子 | A2、B2 | 刘刚等(2017)[ |
人工测量 | 球B样条曲线 | A1、B1 | 赵丽丽等(2011)[ | |
人工测量 | MATLAB中的interp函数、quad函数、surf函数等进行曲线、曲面的拟合 | A1、B1 | 祁力钧等(2013)[ | |
黄瓜 | 显微照相机 | 仿射变换、VTK | A2、B2 | 陈学峰等(2009)[ |
单反相机、三维扫描仪 | 豪斯多夫距离、SFM与MVS | A2、B2 | 胡鹏程等(2015)[ | |
人工测量 | 3次Bézier曲面算法、L系统 | A1、B1 | 杨沛和何东健(2010)[ | |
数码相机 | SIFT算法、B样条曲线、Delaunay网格算法 | A2、B2 | 杨亮等(2009)[ | |
三维数字化仪 | 参数化方程、Delaunay网格化算法 | A4、B4 | 陆声链等(2017)[ | |
辣椒 | 三维数字化仪 | B样条曲线、NURBS曲面、T样条曲线 | A4、B4 | 乔桂新等(2012)[ |
人工测量 | 有效积温—Logistic方程 | A1、B1 | 赵泽英等(2012)[ | |
人工测量 | Bézier算法、Wang Tiles算法、三维Morphing | A1、B1 | 郭明伟(2010)[ | |
葡萄 | 三维数字化仪 | DUS知识库规则 | A4、B4 | 温维亮等(2015)[ |
生菜 | 三维扫描仪 | 器官模板技术 | A3、B3 | 温维亮等(2011)[ |
单反相机 | 边缘检测算法、Nurbs曲面、OpenGL库 | A2、B2 | 孔繁爽等(2015)[ | |
烟草 | 三维数字化仪 | B样条曲线、插值样条曲线 | A4、B4 | 王芸芸等(2010[ |
表4
作物田间群体三维重构相关研究
作物 | 采样设备和方法 | 重构方法/工具 | 优缺点 | 参考文献 |
---|---|---|---|---|
玉米 | 三维扫描仪 | t分布函数 | A2、B3 | 温维亮等(2018)[ |
玉米 | 三维扫描仪 | 分段曲率、 VC++、OpenGL 库 | A3、B3 | 程锦和劳彩莲(2009)[ |
棉花 | 双目视觉系统 | SIFT 算法 | A2、B2 | 牛顺义(2016)[ |
棉花 | 人工测量 | COTGROW 模型、GroIMP 平台 | A1、B1 | 陈超等(2016)[ |
棉花 | 人工测量 | 系统分析法、VC++、OpenGL 库 | A1、B1 | 周娟等(2009)[ |
棉花、谷子 | 多目视觉 | FastTracer | A2、B2 | Burgess等(2017)[ |
水稻 | 人工测量 | RPTDS软件、VC++、OpenGL 库 | A1、B1 | 孟军等(2007)[ |
番茄 | 人工测量、三维扫描仪 | 网格模型、B样条曲线 | A1、B1 | 袁晓敏(2012)[ |
大豆 | Kinect2.0 | MATLAB软件、最大类间方差阈值分割法 | A2、B2 | 冯佳睿等(2019)[ |
大豆、玉米 | 多目视觉 | Visual SFM | A2、B2 | Zhu等(2020)[ |
草莓 | 超声波传感 | MATLAB软件 | A3、B3 | 祁力钧等(2013)[ |
葡萄 | 激光雷达 | MATLAB软件 | A3、B3 | Moreno(2020)[ |
葡萄 | 三维数字化仪 | VegeSTAR软件 | A4、B4 |
表5
作物根系三维重构相关研究
作物 | 采样设备和方法 | 重构方法/工具 | 优缺点 | 参考文献 |
---|---|---|---|---|
大豆 | CT、磁共振 | 体积图像算法(MAVI)软件包 | A3、B3 | Metzner等(2015)[ |
水稻 | 三维扫描仪 | 霍夫变换、Ball-B样条 | A3、B3 | Fang等(2009)[ |
大豆 | 光学显微镜 | Adobe After Effects软件 | A2、B2 | Livingston等(2019)[ |
水稻 | 数字成像系统 | RootReader3D | A3、B3 | Clark等(2011)[ |
玉米、大麦 | 磁共振 | NMRooting | A3、B3 | Van Dusschoten等(2016)[ |
番茄 | CT | Roo Trak | A3、B3 | Mairhofer等(2013)[ |
大麦、小麦 | CT | VG Studio MAX 2.2软件 | A2、B2 | Pfeifer等(2015)[ |
大麦 | 磁共振成像 | WinRhizo软件 | A3、B3 | Pflugfelder等(2017)[ |
玉米 | 单反相机 | WinRhizo、GiARoots、SmartRoot | A3、B3 | Le Marié等(2014)[ |
水稻 | 三维体内成像技术 | GiA Roots | A3、B3 | Galkovskyi(2012)[ |
甜菜 | 核磁共振成像 | Mevislab软件包 | A3、B3 | Metzner等(2014)[ |
水稻 | CT | Genstat 15.1 | A2、B2 | Zappala等(2013)[ |
番茄 | μCT | OpenVMS | A3、B3 | |
小麦 | 根系构型数字化仪 | Pro-E软件 | A4、B4 |
1 | 李伟. 高通量作物表型检测关键技术研究与应用[D]. 合肥: 中国科学技术大学, 2017. |
LI W. Research and application of key techniques for high-throughput crop phenotypic detection [D]. Hefei: University of Science and Technology of China, 2017. | |
2 | 张慧春, 周宏平, 郑加强, 等. 植物表型平台与图像分析技术研究进展与展望[J]. 农业机械学报, 2020, 51(3): 1-17. |
ZHANG H, ZHOU H, ZHENG J, et al. Research progress and prospect in plant phenotyping platform and image analysis technology[J]. Transactions of the CSAM, 2020, 51(3): 1-17. | |
3 | 师翊. 基于点云的苹果树冠层光照分布与生长过程数字化关键技术研究[D]. 杨凌: 西北农林科技大学, 2019. |
SHI Y. Key technologies of apple tree canopy illumination distribution and growth process digitization based on point cloud [D]. Yangling: Northwest A&F University, 2019. | |
4 | 左超, 张晓磊, 胡岩, 等. 3D真的来了吗?——三维结构光传感器漫谈[J]. 红外与激光工程, 2020,49(3): 9-53. |
ZUO C, ZHANG X, HU Y, et al. Has 3D finally come of age? ——An introduction to 3D structured-light sensor[J]. Infrared and Laser Engineering, 2020, 49(3): 9-53. | |
5 | 张建, 李宗南, 张楠, 等. 基于实测数据的作物三维信息获取与重建方法研究进展[J]. 华中农业大学学报, 2013, 32(4): 126-134. |
ZHANG J, LI Z, ZHANG N, et al. Advances in 3D information collection and reconstruction of crop based on the measured data[J]. Journal of Huazhong Agricultural University, 2013, 32(4): 126-134. | |
6 | 刘刚, 司永胜, 冯娟. 农林作物三维重建方法研究进展[J]. 农业机械学报, 2014, 45(6): 38-46, 19. |
LIU G, SI Y, FENG J. 3D reconstruction of agriculture and forestry crops[J]. Transactions of the CSAM, 2014, 45(6): 38-46, 19. | |
7 | 李林. 基于点云的农作物三维重建研究现状及展望[J]. 农业开发与装备, 2019(10): 99-101. |
LI L. Research status and prospect of crop 3D reconstruction based on point cloud [J]. Agricultural Development and Equipment, 2019(10): 99-101. | |
8 | LI L, ZHANG Q, HUANG D. A review of imaging techniques for plant phenotyping[J]. Sensors, 2014, 14: 20078-20111. |
9 | WULDER M A, WHITE J C, NELSON R F, et al. Lidar sampling for large-area forest characterization: A review[J]. Remote Sensing Environment, 2012, 121: 196-209. |
10 | 郭俊, 牛铮. 植被三维建模及应用进展[J]. 计算机工程与应用, 2009, 45(10): 26-29. |
GUO J, NIU Z. Progress in 3D modeling and visualization of vegetation[J]. Computer Engineering and Applications, 2009, 45(10): 26-29. | |
11 | 赵春江, 王功明, 郭新宇, 等. 基于交互式骨架模型的玉米根系三维可视化研究[J]. 农业工程学报, 2007, 23(9): 1-6. |
ZHAO C, WANG G, GUO X, et al. 3D visualization of corn root system based on interactive framework model[J]. Transactions of the CSAE, 2007, 23(9): 1-6. | |
12 | 方慧, 胡令潮, 何任涛, 等. 植物三维信息采集方法研究[J]. 农业工程学报, 2012, 28(3): 142-147. |
FANG H, HU L, HE R, et al. Research on plant three-dimensional information acquisition method[J]. Transactions of the CSAE, 2012, 28(3): 142-147. | |
13 | RAUMONEN P, KAASALAINEN S, KAASALAINEN M, et al. Approximation of volume and branch size distribution of trees from laser scanner data[J]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2011, 38(5): 79-84. |
14 | PAULUS S, SCHUMANN H, KUHLMANN H, et al. High-precision laser scanning system for capturing 3D plant architecture and analysing growth ofcereal plants[J]. Biosystems Engineering, 2014, 121(18):1-11. |
15 | WU S, WEN W, WANG Y, et al. MVS-pheno: A portable and low-cost phenotyping platform for maize shoots using multiview stereo 3D reconstruction[J]. Plant Phenomics, 2020, 2020(2): 1-17. |
16 | 刘占凤, 苏中滨, 郑萍, 等. 可控式大豆拓扑结构建模及其可视化模拟的方法[J]. 农机化研究, 2008(1): 183-185. |
LIU Z, SU Z, ZHENG P, et al. Methods on controllable soybean topology structure modeling and its visualization study[J]. Journal of Agricultural Mechanization Research, 2008(1): 183-185. | |
17 | 赵丽丽, 温维亮, 彭亚宇, 等. 幼苗期油菜几何造型研究[J]. 安徽农业科学, 2011, 39(23): 1085-1087. |
ZHAO L, WEN W, PENG Y, et al. Geometric modeling of Brassica campestris L. during seedling stage[J]. Journal of Anhui Agricultural Sciences, 2011, 39(23): 14005-14007. | |
18 | 彭永石. 基于双目立体视觉的番茄三维信息的测量方法[C]// 中国农业工程学会学术年会. 北京, 中国: 中国农业工程学会, 2007. |
PENG Y. Measurement method of tomato 3d information based on binocular stereo vision[C]// Bi-annual Conference of Chinese Society of Agricultural Engineering. Beijing, China: Chinese Society of Agricultural Engineering, 2007. | |
19 | 胡秀珍. 梨树枝干模型构建与三维实现[D]. 合肥: 中国科学技术大学, 2011. |
HU X. 3D Visualization of trunk and branch model of pear tree[D]. Hefei: University of Science and Technology of China, 2011. | |
20 | 王菲, 张社奇, 李丙智, 等. 高纺锤形苹果树三维重建和光照特性的评价[J]. 北方园艺, 2012(6): 10-13. |
WANG F, ZHANG S, LI B, et al. Three-dimensional reconstruction of trees trained to tall spindle shape and assessment of light characteristics[J]. Northern Horticulture, 2012(6): 10-13. | |
21 | 郭凯敏. 基于双目立体视觉三维重建方法的研究[D]. 哈尔滨: 东北农业大学, 2016. |
GUO K. Research on the method of 3D reconstruction based on binocular stereo vision[D]. Harbin: Northeast Agricultural University, 2016. | |
22 | NGUYEN T T, SLAUGHTER D C, TOWNSLEY B, et al. Comparison of structure-from-motion and stereo vision techniques for full in-field 3D reconstruction and phenotyping of plants: An investigation in sunflower[C]// ASABE International Meeting. St. Joseph, USA: The American Society of Agricultural and Biological Engineers, 2016. |
23 | DUAN T, CHAPMAN S C, HOLLAND E, et al. Dynamic quantification of canopy structure to characterize early plant vigour in wheat genotypes[J]. Journal of Experimental Botany, 2016, 67(15): 4523-4534. |
24 | HUI F, ZHU J, HU P, et al. Image-based dynamic quantification and high-accuracy 3D evaluation of canopy structure of plant populations[J]. Annals of Botany, 2018, 121(5): 1079-1088. |
25 | BISKUP B, SCHARR H, SCHURR U, et al. A stereo imaging system for measuring structural parameters of plant canopies[J]. Plant Cell & Environment, 2010, 30(10): 1299-1308. |
26 | SHAFIEKHANI A, KADAM S, FRITSCHI F B, et al. Vinobot and Vinoculer: Two robotic platforms for high-throughput field phenotyping[J]. Sensors, 2017, 17(1): 214. |
27 | 尹宏鹏, 陈波, 柴毅, 等. 基于视觉的目标检测与跟踪综述[J]. 自动化学报, 2016, 42(10): 1466-1489. |
YI H, CHEN B, CHAI Y, et al. Vision-based object detection and tracking: A review[J]. IEEE/CAA Journal of Automatica Sinica, 2016, 42(10): 1466-1489. | |
28 | 肖伯祥, 郭新宇, 王纪华, 等. 玉米叶片形态建模与网格简化算法研究[J]. 中国农业科学, 2007, 40(4): 693-697. |
XIAO B, GUO X, WANG J, et al. Maize leaf morphological modeling and mesh simplification of surface[J]. Scientia Agricultura Sinica, 2007, 40(4): 693-697. | |
29 | 程锦, 劳彩莲. 基于分段曲率的玉米植株三维结构的重建[J]. 中国农学通报, 2009, 25(24): 538-543. |
CHENG J, LAO C. Three-dimensional reconstruction of maize stand based on subsegmentation on leaf midrib curvature calculation[J]. Chinese Agricultural Science Bulletin, 2009, 25(24): 538-543. | |
30 | YOUNG J, DORR G J, HANAN J, et al. Surface reconstruction of wheat leaf morphology from three-dimensional scanned data[J]. Functional Plant Biology, 2015, 42(5): ID 444. |
31 | SUN S, LI C, PATERSON A H, et al. In-field high throughput phenotyping and cotton plant growth analysis using LiDAR[J]. Frontiers in Plant Science, 2018, 9: ID PMC5786533. |
32 | 胡鹏程, 郭焱, 李保国, 等. 基于多视角立体视觉的植株三维重建与精度评估[J]. 农业工程学报, 2015, 31(11): 209-214. |
HU P, GUO Y, LI B, et al. Three-dimensional reconstruction and its precision evaluation of plant architecture based on multiple view stereo method[J]. Transactions of the CSAE, 2015, 31(11): 209-214. | |
33 | LEE K H, EHSANI R. Comparison of two 2D laser scanners for sensing object distances, shapes, and surface patterns[J]. Computers & Electronics in Agriculture, 2008, 60(2): 250-262. |
34 | OMASA K, KONISHI A. 3D lidar imaging for detecting and understanding plant responses and canopy structure[J]. Journal of Experimental Botany, 2006, 58(4): 881-898. |
35 | 陆声链, 李帼, 吴升. 实测数据驱动的小型植物三维重建研究[J]. 郑州大学学报(理学版), 2017, 49(3): 84-87. |
LU S, LI G, WU S. Data-driven 3D reconstruction of small plant structure[J]. Journal of Zhengzhou University(Natural Science Edition), 2017, 49(3): 84-87. | |
36 | 方志力, 温维亮, 郭新宇, 等. 基于Kinect的三维玉米植株骨架提取[J]. 系统仿真学报, 2017, 29(3): 524-530. |
FANG Z, WEN W, GUO X, et al. Skeleton extraction from three-dimensional maize based on Kinect[J]. Journal of System Simulation, 2017, 29(3): 524-530. | |
37 | VÁZQUEZ-ARELLANO M, GRIEPENTROG H, REISER D, et al. 3-D imaging systems for agricultural applications—A review[J]. Sensors, 2016, 16(5): ID 618. |
38 | MORENO H, VALERO C, JOSÉ MARÍA BENGOCHEA-GUEVARA, et al. On-ground vineyard reconstruction using a LiDAR-based automated system[J]. Sensors, 2020, 20(4): ID 4. |
39 | ZHU B, LIU F, XIE Z, et al. Quantification of light interception within image-based 3-D reconstruction of sole and intercropped canopies over the entire growth season[J]. Annals of Botany, 2020, 126(4): ID 4. |
40 | BURGESS A J, RETKUTE R, POUND M P, et al. Image-based 3D canopy reconstruction to determine potential productivity in complex multi-species crop systems[J]. Annals of Botany, 2017, 119(4): 517-532. |
41 | 赵春江. 植物表型组学大数据及其研究进展[J]. 农业大数据学报, 2019, 1(2): 5-18. |
ZHAO C. Big data of plant phenomics and its research progress[J]. Journal of Agricultrual Big Data, 2019, 1(2): 5-18. | |
42 | METZNER R, EGGERT A, DVAN DUSSCHOTEN, et al. Direct comparison of MRI and X-ray CT technologies for 3D imaging of root systems in soil: Potential and challenges for root trait quantification[J]. Plant Methods, 2015, 11(1): 1-11. |
43 | LIVINGSTON D, TUONG T, NOGUEIRA M, et al. Three-dimensional reconstruction of soybean nodules provides an update on vascular structure[J]. American journal of Botany, 2019, 106(3): 507-513. |
44 | ZHU R, SUN K, YAN Z, et al. Analysing the phenotype development of soybean plants using low-cost 3D reconstruction[J]. Scientific Reports, 2020, 10: ID 7055 (2020). |
45 | MA X, ZHU K, GUAN H, et al. Calculation method for phenotypic traits based on the 3D reconstruction of maize canopies[J]. Sensors, 2019, 19(5): ID 1201. |
46 | THAPA S, ZHU F, WALIA H, et al. A novel LiDAR-based instrument for high-throughput, 3D measurement of morphological traits in maize and sorghum[J]. Sensors, 2018, 18(4): ID 1187. |
47 | 苏伟, 蒋坤萍, 郭浩, 等. 地基激光雷达提取大田玉米植株表型信息[J]. 农业工程学报, 2019, 35(10): 125-130. |
SU W, JIANG K, GUO H, et al. Extraction of phenotypic information of maize plants in field by terrestrial laser scanning[J]. Transactions of the CSAE, 2019, 35(10): 125-130. | |
48 | 李抒昊, 关海鸥, 于崧, 等. 基于FastSCAN玉米整株三维重构及参数计算方法[J]. 农机化研究, 2018, 40(4): 162-166. |
LI S, GUAN H, YU S, et al. Whole 3D reconstruction based on FastSCAN corn and parameter calculation method[J]. Journal of Agricultural Mechanization Research, 2018, 40(4): 162-166. | |
49 | 王勇健, 温维亮, 郭新宇, 等. 基于点云数据的植物叶片三维重建[J]. 中国农业科技导报, 2014, 16(5): 83-89. |
WANG Y, WEN W, GUO X, et al. Three-dimensional reconstruction of plant leaf blade based on point cloud data[J]. Journal of Agricultural Science and Technology, 2014, 16(5): 83-89. | |
50 | 刘睿, 刘婷, 董润茹, 等. 基于地基激光雷达数据的单株玉米三维建模[J]. 中国农业大学学报, 2014, 19(3): 196-201. |
LIU R, LIU T, DONG R, et al. 3D modeling of maize based on terrestrial LiDAR point cloud data[J]. Journal of China Agricultural University, 2014, 19(3): 196-201. | |
51 | 李辉. 基于虚拟双目视觉的玉米叶片三维重建方法[J]. 科技通报, 2016, 32(5): 96-101. |
LI H. 3D reconstruction of maize leaves based on virtual visual technology[J]. Bulletin of Science and Technology, 2016, 32(5): 96-101. | |
52 | 王传宇, 赵明, 阎建河, 等. 基于双目立体视觉技术的玉米叶片三维重建[J]. 农业工程学报, 2010, 26(4): 198-202. |
WANG C, ZHAO M, YAN J, et al. Three-dimensional reconstruction of maize leaves based on binocular stereovision system[J]. Transactions of the CSAE, 2010, 26(4): 198-202. | |
53 | 宋祺鹏, 唐晶磊, 辛菁. 基于生长模型的苗期大豆植株三维重建[J]. 计算机工程, 2017, 43(5): 275-280. |
SONG Q, TANG J, XIN J. 3-dimensional reconstruction for soybean plant of seedling stage based on growth model[J]. Computer Engineering, 2017, 43(5): 275-280. | |
54 | 谢秋菊, 苏中滨, 孙红敏. 大豆叶片三维重建及形变技术研究[J]. 农机化研究, 2011, 33(9): 220-223. |
XIE Q, SU Z, SUN H. Research on technology for soybean leaf 3D reconstruction and deformation modeling[J]. Journal of Agricultural Mechanization Research, 2011, 33(9): 220-223. | |
55 | 郑萍, 苏中滨, 康丽. 基于生长方程的虚拟大豆拓扑结构建模方法的研究[J]. 农机化研究, 2006(7): 193-195. |
ZHENG P, SU Z, KANG L. Modeling of virtual soybean topology based on growth function[J]. Journal of Agricultural Mechanization Research, 2006(7): 193-195. | |
56 | 史维杰, 张吴平, 郝雅洁, 等. 基于视觉三维重建的作物表型分析[J].湖北农业科学, 2019, 58(16): 125-128. |
SHI W, ZHANG W, HAO Y, et al. Crop phenotypic analysis based on visual 3D reconstruction [J]. Hubei Agricultural Sciences, 2019, 58(16): 125-128. | |
57 | DUAN T, CHAPMAN S C, HOLLAND E, et al. Dynamic quantification of canopy structure to characterize early plant vigour in wheat genotypes[J]. Journal of Experimental Botany, 2016, 67(15): 4523-4534. |
58 | FANG W, FENG H, YANG W N, et al. High-throughput volumetric reconstruction for 3D wheat plant architecture studies[J]. Journal of Innovative Optical Health Sciences, 2016, 9(5): ID 1650037. |
59 | 胡少军, 何东健, 耿楠, 等. 基于图像处理的小麦叶片形态的三维重建[J]. 农业工程学报, 2007, 23(1): 150-154. |
HU S, HE D, GENG N, et al. 3D reconstruction of wheat lamina shape based on image processing[J]. Transactions of the CSAE, 2007, 23(1): 150-154. | |
60 | 李书钦. 小麦生长模拟模型与三维可视化技术研究[D]. 北京: 中国农业科学院, 2017. |
LI S. Research on wheat growth simulation model and 3D visualization technology[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. | |
61 | 李书钦, 刘海龙, 诸叶平,等. 基于实测数据和NURBS曲面的小麦叶片三维可视化[J]. 福建农业学报, 2016, 31(7): 777-782. |
LI S, LIU H, ZHU Y, et al. 3-D visualization of wheat leaves using measured data and NURBS surface[J]. Fujian Journal of Agricultural Science, 2016, 31(7): 777-782. | |
62 | 李书钦, 诸叶平, 刘海龙,等. 基于NURBS曲面的小麦叶片三维可视化研究与实现[J]. 中国农业科技导报, 2016, 18(3): 89-95. |
LI S, ZHU Y, LIU H, et al. Research and realization of wheat leaf three-dimensional visualization based on NURBS surface[J]. Journal of Agricultural Science and Technology, 2016, 18(3): 89-95. | |
63 | ZHANG H, WANG Q, ZHANG H, et al. Wheat three-dimensional reconstruction and visualization system[C]// International Conference on Computer and Computing Technologies in Agriculture. Berlin, German: Springer, 2012: 234-243. |
64 | KEMPTHORNE D M, TURNER I W, BELWARD J A, et al. Surface reconstruction of wheat leaf morphology from three-dimensional scanned data[J]. Functional Plant Biology, 2015, 42(5): 444-451. |
65 | 柏月, 汪木兰, 朱昊, 等. 基于双目视觉的棉花三维重构技术[J]. 机械设计与制造工程, 2017, 46(11): 150-154. |
BAI Y, WANG M, ZHU H, et al. 3D reconstruction technology of the cotton image based on binocular vision[J]. Machine Design and Manufacturing Engineering, 2017, 46(11): 150-154. | |
66 | 韩大龙. 基于双目立体视觉技术的棉株动态识别研究[D]. 石河子: 石河子大学, 2014. |
HAN D. Cotton plant dynamic recognition system based on the binocular stereo vision technology[D]. Shihezi: Shihezi University, 2014. | |
67 | 杨娟, 赵明, 潘学标. 基于NURBS和VC++6.0的棉花生长可视化研究[J]. 农业工程学报, 2006, 22(10): 159-162. |
YANG J, ZHAO M, PAN X. Visualization of cotton growth based on NURBS and VC++6.0[J]. Transactions of the CSAE, 2006, 22(10): 159-162. | |
68 | 陈超, 潘学标, 张立祯, 等. 棉花地上部生长的功能-结构模型研究[J]. 作物学报, 2012, 38(12): 2237-2245. |
CHEN C, PAN X, ZHANG L, et al. Functional and structural model for above-ground growth in cotton[J]. Acta Agronomica Sinica, 2012, 38(12): 2237-2245. | |
69 | 宋时德, 李淼, 张健, 等. 面向以多视角立体匹配获取的植株三维点云的去噪方法[J]. 计算机应用, 2017(S2): 141-145. |
SONG S, LI M, ZHANG J, et al. Denoising method of 3D point clouds based on multi-angle stereo matching[J]. Journal of Computer Applications, 2017(S2): 141-145. | |
70 | GUO Q, WU F, PANG S, ZHAO X Q, et al. Crop 3D—A LiDAR based platform for 3D high-throughput crop phenotyping[J]. Science China Life Sciences, 2018, 61(3): 1-12. |
71 | 孟耀华, 荣丽红, 仝志民, 等. 基于计算机视觉的水稻三维重建方法[J]. 黑龙江八一农垦大学学报, 2014, 26(4): 80-82. |
MENG Y, RONG L, TONG Z, et al. Rice 3D reconstruction based on computer vision[J]. Journal of Heilongjiang Bayi Agricultural University, 2014, 26(4): 80-82. | |
72 | 何火娇, 杨红云, 唐建军, 等. 水稻植株虚拟生长可视化系统设计及其实现[J]. 系统仿真学报, 2009, 21(14): 4393-4396. |
HE H, YANG H, TANG J, et al. Design and realization of virtual growth visualization system for rice plant[J]. Journal of System Simulation, 2009, 21(14): 4393-4396. | |
73 | 徐其军, 汤亮, 顾东祥, 等. 基于形态参数的水稻根系三维建模及可视化[J]. 农业工程学报, 2010, 26(10): 188-194. |
XU Q, TANG L, GU D, et al. Architectural parameter-based three dimensional modeling and visualization of rice roots[J]. Transactions of the CSAE, 2010, 26(10): 188-194. | |
74 | 汪丽萍, 何火娇, 杨红云. 水稻叶片三维建模与叶色渲染[J]. 计算机工程与应用, 2017, 53(24): 187-190. |
WANG L, HE H, YANG H. Three-dimensional shape modeling and real-time color rendering of rice leaf[J]. Computer Engineering and Applications, 2017, 53(24): 187-190. | |
75 | 张楠. 水稻序列图像在三维可视化建模及营养诊断中的应用研究[D]. 武汉: 华中农业大学, 2013. |
ZHANG N. Sequence rice images in the research of 3D visualization shape and nutrition diagnosis[D]. Wuhan: Huazhong Agricultural University, 2013. | |
76 | CLARK RT, MACCURDY RB, JUNG JF, et al. Three-dimensional root phenotyping with a novel imaging and software platform[J]. Plant Physiology, 2011, 156(2): 455-465. |
77 | 吴茜. 基于计算机视觉的水稻植株三维重建[D]. 南昌: 江西农业大学, 2012. |
WU Q. Computer vision based 3D reconstruction of rice[D]. Nanchang: Jiangxi Agricultural University, 2012. | |
78 | 史蒲娟, 翟瑞芳, 常婷婷, 等. 基于单目视觉和激光扫描技术的油菜植株模型重建及株型参数测量[J]. 华中农业大学学报, 2017, 36(3): 63-68. |
SHI P, ZHAI R, CHANG T, et al. 3D model generation and phenotypic measurement of rapeseed plant based on monocular visio and laser scanning technology[J]. Journal of Huazhong Agricultural University, 2017, 36(3): 63-68. | |
79 | 方慧, 杜朋朋, 胡令潮, 等. 基于可视化类库的植株三维形态配准方法及点云可视化[J]. 农业工程学报, 2013, 29(22): 180-188. |
FANG H, DU P, HU L, et al. VTK-based plant 3D morphological visualization and registration[J]. Transactions of the CSAE, 2013, 29(22): 180-188. | |
80 | 李冬, 林宝刚, 史同鑫, 等. 油菜植株三维结构的测量与可视化建模研究[J]. 浙江农业学报, 2013, 25(5): 926-932. |
LI D, LIN B, SHI T, et al. Modeling and visualization of 3D architecture of oilseed rape (Brassica napus L.)[J]. Acta Agriculturae Zhejiangensis, 2013, 25(5): 926-932. | |
81 | 欧中斌. 油菜生长可视化仿真关键技术研究[D]. 长沙: 湖南农业大学, 2007. |
OU Z. Studies on the key technology of rapeseed (Brassica napus L.) Visual Growth[D]. Changsha: Hunan Agricultural University, 2007. | |
82 | 岳延滨. 油菜植株形态结构模型及可视化[J]. 南京: 南京农业大学, 2010. |
YUE Y. The morphological structural model and visualization of rapeseed (Brassica napus L.) plant[J]. Nanjing: Nanjing Agricultural University, 2010. | |
83 | RAN N L, FILIN S, EIZENBERG H. Plant growth parameter estimation from sparse 3D reconstruction based on highly-textured feature points[J]. Precision Agriculture, 2013, 14(6): 586-605. |
84 | 董乔雪, 王一鸣, 杨丽丽, 等. 番茄三维形态结构的参数提取及模拟[J]. 农业工程学报, 2010, 26(S2):38-42. |
DONG Q, WANG Y, YANG L, et al. Parameter identification of tomato 3D architectural model and simulation[J]. Transactions of the CSAE, 2010, 26(S2): 38-42. | |
85 | 袁晓敏, 温维亮, 郭新宇, 等. 番茄群体冠层形态结构三维模拟——基于实测数据[J]. 农机化研究, 2012, 34(2): 172-176. |
YUAN X, WEN W, GUO X, et al. Three-dimensional simulation of tomato canopy morphological structure based on measured data[J]. Journal of Agricultural Mechanization Research, 2012, 34(2): 172-176. | |
86 | 袁晓敏, 赵春江, 温维亮,等. 番茄植株三维形态精确重构研究[J]. 农业机械学报, 2012, 43(12): 204-210. |
YUAN X, ZHAO C, WEN W, et al. Detailed modeling of 3-D configuration of tomato plant[J]. Transactions of the CSAM, 2012, 43(12): 204-210. | |
87 | 辛龙娇, 徐立鸿, 李大威, 等. 基于参数L-系统的温室番茄植株的三维重建[J]. 现代农业科技, 2014(3): 340-343. |
XIN L, XU L, LI D, et al. 3D reconstruction of greenhouse tomato plant based on parametric L-system[J]. Modern Agricultural Sciences and Technology, 2014(3): 340-343. | |
88 | 刘刚, 张雪, 宗泽,等. 基于深度信息的草莓三维重建技术[J]. 农业机械学报, 2017, 48(4): 160-165. |
LIU G, ZHANG X, ZONG Z, et al. 3D reconstruction of strawberry based on depth information[J]. Transactions of the CSAM, 2017, 48(4): 160-165. | |
89 | 张雪, 郭彩玲, 宗泽,等. 基于轮廓分割的草莓叶片三维建模[J]. 农业工程学报, 2017, 33(S1): 206-211. |
ZHANG X, GUO C, ZONG Z, et al. 3D reconstruction of strawberry leaves based on contour segmentation[J]. Transactions of the CSAE, 2017, 33(S1): 206-211. | |
90 | 赵丽丽, 温维亮, 郭新宇, 等. 草莓三维形态几何建模与真实感绘制[J]. 中国农学通报, 2011, 27(6): 201-205. |
ZHAO L, WEN W, GUO X, et al. Techniques for modeling 3-D shape and realistic rendering of strawberry[J]. Chinese Agricultural Science Bulletin, 2011, 27(6): 201-205. | |
91 | 祁力钧, 梁霞, 冀荣华,等. 基于超声波传感技术的温室草莓冠层三维重构与测量[J]. 农业机械学报, 2013, 44(9): 199-203. |
QI L, LIANG X, JI R, et al. 3-D reconstruction and measurement of greenhouse strawberry canopy based on ultrasonic sensors[J]. Transactions of the CSAM, 2013, 44(9): 199-203. | |
92 | 陈学峰, 郭新宇, 周淑秋,等. 基于仿射变换的植物切片图像配准及三维重建[J]. 农机化研究, 2009, 31(7): 82-85. |
CHEN X, GUO X, ZHOU S, et al. Plant slices' image registration based on affine transformation and 3D reconstruction[J]. Journal of Agricultural Mechanization Research, 2009, 31(7): 82-85. | |
93 | 胡鹏程, 郭焱, 李保国, 等. 基于多视角立体视觉的植株三维重建与精度评估[J]. 农业工程学报, 2015, 31(11): 209-214. |
HU P, GUO Y, LI B, et al. Three-dimensional reconstruction and its precision evaluation of plant architecture based on multiple view stereo method[J]. Transactions of the CSAE, 2015, 31(11): 209-214. | |
94 | 杨沛, 何东健. 基于参数L-系统的黄瓜苗期生长可视化研究[J]. 农机化研究, 2010, 32(8): 181-185. |
YANG P, HE D. A study on visualization of cucumber growth at seedling stage based on parametric L-system[J]. Journal of Agricultural Mechanization Research, 2010, 32(8): 181-185. | |
95 | 方小勇, 郭新宇, 王丹虹, 等. 黄瓜叶几何造型研究[J]. 计算机工程与应用, 2006, 42(32): 183-184. |
FANG X, GUO X, WANG D, et al. Geometry modeling of cucumber leaf[J]. Computer Engineering and Applications, 2006, 42(32): 183-184. | |
96 | 杨亮, 郭新宇, 陆声链, 等. 基于多幅图像的黄瓜叶片形态三维重建[J]. 农业工程学报, 2009, 25(2): 141-144. |
YANG L, GUO X, LU S, et al. 3D morphological reconstruction of cucumber leaf based on multiple images[J]. Transactions of the CSAE, 2009, 25(2): 141-144. | |
97 | 陆声链, 李帼, 吴升. 实测数据驱动的小型植物三维重建研究[J]. 郑州大学学报(理学版), 2017, 49(3): 84-87. |
LU S, LI G, WU S. Data-driven 3D reconstruction of small plant structure[J]. Journal of Zhengzhou University(Natural Science Edition), 2017, 49(3): 84-87. | |
98 | 乔桂新, 温维亮, 彭亚宇, 等. 辣椒植株三维重构与可视化研究[J]. 计算机工程与设计, 2012, 33(4): 1499-1503. |
QIAO G, WEN W, PENG Y, et al. Research on three-dimensional geometric morphological modeling and visualization of pepper[J]. Computer Engineer and Design, 2012, 33(4): 1499-1503. | |
99 | 赵泽英, 岳延滨, 聂克艳, 等. 辣椒叶片形态模拟模型研究(英文)[J]. 贵州农业科学. 2012, 40(5): 182-186. |
ZHAO Z, YUE Y, NIE K, et al. Study on morphological simulation models of chili pepper leaves[J]. Guizhou Agricultural Sciences, 2012, 40(5): 182-186. | |
100 | 郭明伟. 基于智能虚拟器官的植物建模关键技术研究[D]. 重庆: 重庆大学, 2010. |
GUO M. Research on key technologies of plant modelling based on intelligent virtual organ[D]. Chongqing: Chongqing University, 2010. | |
101 | 温维亮, 郭新宇, 王勇健, 等. 葡萄树地上部形态结构数据获取方法[J]. 农业工程学报, 2015, 31(22): 161-168. |
WEN W, GUO X, WANG Y, et al. Morphological and structural data acquisition for above-ground part of grapevine[J]. Transactions of the CSAE, 2015, 31(22): 161-168. | |
102 | 温维亮, 郭新宇, 肖伯祥, 等. 基于模板的生菜参数化几何建模方法[J]. 中国农学通报, 2011, 27(6): 459-463. |
WEN W, GUO X, XIAO B, et al. The parametric geometric modeling method for lettuce based-template[J]. Chinese Agricultural Science Bulletin, 2011, 27(6): 459-463. | |
103 | 孔繁爽, 伍艳莲, 姜海燕. 基于图像特征提取的生菜形态可视化建模[J]. 安徽农业科学, 2015(24): 265-268. |
KONG F, WU Y, JIANG H. Visual modeling of lettuce form based on image feature extraction[J]. Journal of Anhui Agricultural Sciences, 2015, 43(24): 265-268, 278. | |
104 | 王芸芸, 温维亮, 郭新宇,等. 基于球B样条函数的烟草叶片虚拟实现[J]. 农业工程学报, 2011, 27(1): 230-235. |
WANG Y, WEN W, GUO X, et al. Virtual realization of tobacco leaves based on ball B-spline function[J]. Transactions of the CSAE, 2011, 27(1): 230-235. | |
105 | 王芸芸, 温维亮, 郭新宇, 等. 烟草地上部植株三维重构与可视化[J]. 中国农业科学, 2013, 46(1): 37-44. |
WANG Y, WEN W, GUO X, et al. Research on three-dimensional reconstruction and visualization of above-ground tobacco plant[J]. Scientia Agricultura Sinica, 2013, 46(1): 37-44. | |
106 | ZHAO L, ZHAO C, ZHOU L, et al. Analysis on rice production in China[J]. Agricultural Science & Technology, 2016, 17(1): 78-80, 105. |
107 | 张军, 陆继海. 水稻高产栽培技术分析[J]. 吉林农业, 2010(9): 111. |
ZHANG J, LU J. Analysis on high yield cultivation techniques of rice[J]. Jilin Agriculture, 2010(9): 111. | |
108 | 章秀福, 王丹英, 方福平, 等. 中国粮食安全和水稻生产[J]. 农业现代化研究, 2005, 26(2): 85-88. |
ZHANG X, WANG D, FANG F, et al. Food safety and rice production in China[J]. Research of Agricultural Modernization, 2005, 26(2): 85-88. | |
109 | 崔太昌, 陈峰, 李华东, 等. 山东省水稻产业发展现状与科技需求分析[J]. 山东农业工程学院学报, 2015, 32(6): 24-26. |
CUI T, CHEN F, LI H, et al. Analysis on the development status of rice industry and the demand of science and technology in Shandong province[J]. The Journal of Shandong Agricultural Engineering College, 2015, 32(6): 24-26. | |
110 | 刘江南, 魏军华, 向宝玉. 试论油菜种植技术的应用与推广[J]. 新农业, 2018(1): 35-37. |
LIU J, WEI J, XIANG B. On the application and promotion of rapeseed planting technology[J]. New Agricultural, 2018(1): 35-37. | |
111 | 韩民. 旱地番茄优质高产栽培技术分析[J]. 科学与财富, 2017(8): 170. |
HAN M. Analysis on cultivation techniques of high quality and high yield of tomato in dry land[J]. Science & Wealth, 2017(8): 170. | |
112 | 温维亮, 赵春江, 郭新宇, 等. 基于t分布函数的玉米群体三维模型构建方法[J]. 农业工程学报, 2018, 34(4): 192-200. |
WEN W, ZHAO C, GUO X, et al. Construction method of three-dimensional model of maize colony based on t-distribution function[J]. Transactions of the CSAE, 2018, 34(4): 192-200. | |
113 | 牛顺义. 基于双目视觉的棉花识别与定位系统研究[D]. 合肥: 安徽农业大学, 2016. |
NIU S. Cotton identification and positioning system based on binocular vision[D]. Hefei: Anhui Agricultural University, 2016. | |
114 | 周娟, 周治国, 陈兵林, 等. 基于形态模型的棉花(Gossypium hirsutum L.)虚拟生长系统研究[J]. 中国农业科学, 2009, 42(11): 3843-3851. |
ZHOU J, ZHOU Z, CHEN B, et al. Morphogenesis model-based virtual growth system of cotton (Gossypium hirsutum L.)[J]. Scientia Agricultura Sinica, 2009, 42(11): 3843-3851. | |
115 | 孟军, 陈温福, 王嘉宇. 水稻群体冠层三维结构的计算机模拟分析[J]. 沈阳农业大学学报, 2007, 38(1): 8-13. |
MENG J, CHEN W, WANG J. Computer simulation of 3-dimentional structure of rice canopy[J]. Journal of Shenyang Agricultural University, 2007, 38(1): 8-13. | |
116 | 冯佳睿, 马晓丹, 关海鸥, 等. 基于深度信息的大豆株高计算方法[J]. 光学学报, 2019, 39(5): 1-11. |
FENG J, MA X, GUAN H, et al. Calculation method of soybean plant height based on depth information[J]. Acta Optica Sinica, 2019, 39(5): 1-11. | |
117 | 张洁, 杨伟伟, 容新民,等. 构建不同树形葡萄树体结构的三维虚拟模型[J]. 新疆农业科学, 2021, 58(2): 11. |
ZHANG J, YANG W, RONG X, et al. Digital study on the canopy structure of grape with different tree shapes[J]. Xinjiang Agricultural Sciences, 2021, 58(2): 11. | |
118 | BIETRESATO M, CARABIN G, VIDONI R, et al. Evaluation of a LiDAR-based 3D-stereoscopic vision system for crop-monitoring applications[J]. Computers and Electronics in Agriculture, 2016, 124: 1-13. |
119 | DUSSCHOTEN VAN, METZNER R, KOCHS J, et al. Quantitative 3D analysis of plant roots growing in soil using magnetic resonance imaging[J]. Plant physiology, 2016, 170(3): 1176-1188. |
120 | MAIRHOFER S, ZAPPALA S, TRACY S, et al. Recovering complete plant root system architectures from soil via X-ray μ-computed tomography[J]. Plant methods, 2013, 9(1): 1-7. |
121 | PFEIFER J, KIRCHGESSNER N, COLOMBI T, et al. Rapid phenotyping of crop root systems in undisturbed field soils using X-ray computed tomography[J]. Plant methods, 2015, 11(1): 1-8. |
122 | PFLUGFELDER D, METZNER R, DVAN DUSSCHOTEN, et al. Non-invasive imaging of plant roots in different soils using magnetic resonance imaging (MRI)[J]. Plant Methods, 2017, 13(1): 1-9. |
123 | LE MARIÉ C, KIRCHGESSNER N, MARSCHALL D, et al. Rhizoslides: Paper-based growth system for non-destructive, high throughput phenotyping of root development by means of image analysis[J]. Plant Methods, 2014, 10(1): 1-16. |
124 | GALKOVSKYI T, MILEYKO Y, BUCKSCH A, et al. GiA Roots: Software for the high throughput analysis of plant root system architecture[J]. BMC Plant Biology, 2012, 12(1): 116. |
125 | METZNER R, DVAN DUSSCHOTEN, BÜHLER J, et al. Belowground plant development measured with magnetic resonance imaging (MRI): Exploiting the potential for non-invasive trait quantification using sugar beet as a proxy[J]. Frontiers in Plant Science, 2014, 5: 469. |
126 | ZAPPALA S, HELLIWELL J R, TRACY S R, et al. Effects of X-ray dose on rhizosphere studies using X-ray computed tomography[J]. PloS One, 2013, 8(6): ID e67250. |
127 | 毛罕平, 刘洋, 徐静云, 等. 基于μCT的番茄穴盘苗根系结构及分布特征[J]. 江苏大学学报(自然科学版), 2019, 40(3): 45-51. |
MAO H, LIU Y, XU J, et al. Root structure and distribution characteristics of tomato hole disk seedlings based on μCT [J]. Journal of Jiangsu University (Natural Science Edition), 2019, 40 (3): 45-51. | |
128 | 厉翔, 丁启朔, 陈信信, 等. 大田群体小麦根系构型3D拓扑表型的参数化[J]. 江苏农业学报, 2020, 36(4): 142-147. |
LI X, DING Q, CHEN X, et al. Parameterization of 3D topological phenotype of wheat root system architecture in field population[J]. Jiangsu Journal of Agricultural Sciences, 2020, 36(4): 142-147. | |
129 | TENG X, ZHOU G, WU Y, et al. 3D Reconstruction method of rapeseed plants in the whole growth period using RGB-D camera[J]. Sensors, 2021, 21: ID 4628. |
130 | GUAN X,WANG J,ZHOU Y, et al.High-throughput visible image transmission design based on the X-CT root 3D reconstruction system[C]// EAI GreeNets 2021. Dalian, China: EAI, 2021. |
131 | WEN W, WANG Y, WU S, et al. 3D phytomer-based geometric modelling method for plants—The case of maize[J]. AoB Plants, 2021, 13(5): ID plab055. |
132 | DONNÉ S, LUONG H, DHONDT S, et al. 3D reconstruction of maize plants in the phenoVision system[C]// Knowledge For Growth. Ghent, Belgium: UGent publication. 2016. |
133 | 慧诺瑞德(北京)科技有限公司. 盆栽植物数字性状测量系统[EB/OL]. (2020-10-04)[2021-11-01]. . |
134 | APELT F, BREUER D, NIKOLOSKI Z, et al. Phytotyping4D: A light‐field imaging system for non‐invasive and accurate monitoring of spatio‐temporal plant growth[J]. Plant Journal, 2015, 82: 693-706. |
135 | CIESLAK M, PRUSINKIEWICZ P. Gillespie-Lindenmayer systems for stochastic simulation of morphogenesis[J]. in silico Plants, 2019, 1(1): ID diz009. |
136 | DE WIT C T. Photosynthesis of leaf canopies[R]. Agnc Res Report. 1965 |
137 | 赵春江. 智慧农业发展现状及战略目标研究[J]. 智慧农业, 2019, 1(1): 1-7. |
ZHAO C. State-of-the-art and recommended developmental strategic objectives of smart agriculture[J]. Smart Agriculture, 2019, 1(1): 1-7. | |
138 | 孙凯. 基于三维重构的普兰种业主栽大豆种植密度的优化研究[D]. 哈尔滨: 东北农业大学, 2019. |
SUN K. Research on the optimization of planting density based on 3D reconstruction for soybean planted by PuLan seed company[D]. Harbin: Northeast Agricultural University, 2019. | |
139 | BIETRESATO M, CARABIN G, VIDONI R, et al. Evaluation of a LiDAR-based 3D-stereoscopic vision system for crop-monitoring applications[J]. Computers and Electronics in Agriculture, 2016, 124: 1-13. |
[1] | 白铁成, 王涛, 张楠楠. 基于校正WOFOST模型的枣树生长模拟与水分利用评价[J]. 智慧农业(中英文), 2021, 3(2): 55-67. |
[2] | 韩东, 王鹏新, 张悦, 田惠仁, 周西嘉. 农业干旱卫星遥感监测与预测研究进展[J]. 智慧农业(中英文), 2021, 3(2): 1-14. |
[3] | 胡亚南, 梁驹, 梁社芳, 李世娟, 诸叶平, 鄂越. 基于DSSAT CERES-Wheat 模型的未来40年冬小麦最适播期分析[J]. 智慧农业(中英文), 2021, 3(2): 68-76. |
[4] | 王秀娟, 康孟珍, 华净, DE REFFYE Philippe. 从群体到个体尺度——基于数据的DSSAT和GreenLab作物模型连接探索[J]. 智慧农业(中英文), 2021, 3(2): 77-87. |
[5] | 张建, 谢田晋, 杨万能, 周广生. 近地遥感技术在大田作物株高测量中的研究现状与展望[J]. 智慧农业(中英文), 2021, 3(1): 1-15. |
[6] | 赵欢, 王璟璐, 廖生进, 张颖, 卢宪菊, 郭新宇, 赵春江. 基于Micro-CT的玉米籽粒显微表型特征研究[J]. 智慧农业(中英文), 2021, 3(1): 16-28. |
[7] | 汪进鸿, 韩宇星. 用于作物表型信息边缘计算采集的认知无线传感器网络分簇路由算法[J]. 智慧农业(中英文), 2020, 2(2): 28-47. |
[8] | 徐凌翔, 陈佳玮, 丁国辉, 卢伟, 丁艳锋, 朱艳, 周济. 室内植物表型平台及性状鉴定研究进展和展望[J]. 智慧农业(中英文), 2020, 2(1): 23-42. |
[9] | 吴刚, 彭要奇, 周广奇, 李晓龙, 郑永军, 严海军. 基于多光谱成像和卷积神经网络的玉米作物营养状况识别方法研究[J]. 智慧农业(中英文), 2020, 2(1): 111-120. |
[10] | 吴才聪, 方向明. 基于北斗系统的大田智慧农业精准服务体系构建[J]. 智慧农业, 2019, 1(4): 83-90. |
[11] | 黄文江, 师越, 董莹莹, 叶回春, 邬明权, 崔贝, 刘林毅. 作物病虫害遥感监测研究进展与展望[J]. 智慧农业, 2019, 1(4): 1-11. |
[12] | 李淼, 王敬贤, 李华龙, 胡泽林, 杨选将, 黄小平, 曾伟辉, 张建, 房思思. 基于CNN和迁移学习的农作物病害识别方法研究[J]. 智慧农业, 2019, 1(3): 46-55. |
[13] | 诸叶平, 李世娟, 李书钦. 作物生长过程模拟模型与形态三维可视化关键技术研究[J]. 智慧农业, 2019, 1(1): 53-66. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||