1 | 李伟. 高通量作物表型检测关键技术研究与应用[D]. 合肥: 中国科学技术大学, 2017. | 1 | LI W. Research and application of key techniques for high-throughput crop phenotypic detection [D]. Hefei: University of Science and Technology of China, 2017. | 2 | 张慧春, 周宏平, 郑加强, 等. 植物表型平台与图像分析技术研究进展与展望[J]. 农业机械学报, 2020, 51(3): 1-17. | 2 | ZHANG H, ZHOU H, ZHENG J, et al. Research progress and prospect in plant phenotyping platform and image analysis technology[J]. Transactions of the CSAM, 2020, 51(3): 1-17. | 3 | 师翊. 基于点云的苹果树冠层光照分布与生长过程数字化关键技术研究[D]. 杨凌: 西北农林科技大学, 2019. | 3 | SHI Y. Key technologies of apple tree canopy illumination distribution and growth process digitization based on point cloud [D]. Yangling: Northwest A&F University, 2019. | 4 | 左超, 张晓磊, 胡岩, 等. 3D真的来了吗?——三维结构光传感器漫谈[J]. 红外与激光工程, 2020,49(3): 9-53. | 4 | ZUO C, ZHANG X, HU Y, et al. Has 3D finally come of age? ——An introduction to 3D structured-light sensor[J]. Infrared and Laser Engineering, 2020, 49(3): 9-53. | 5 | 张建, 李宗南, 张楠, 等. 基于实测数据的作物三维信息获取与重建方法研究进展[J]. 华中农业大学学报, 2013, 32(4): 126-134. | 5 | ZHANG J, LI Z, ZHANG N, et al. Advances in 3D information collection and reconstruction of crop based on the measured data[J]. Journal of Huazhong Agricultural University, 2013, 32(4): 126-134. | 6 | 刘刚, 司永胜, 冯娟. 农林作物三维重建方法研究进展[J]. 农业机械学报, 2014, 45(6): 38-46, 19. | 6 | LIU G, SI Y, FENG J. 3D reconstruction of agriculture and forestry crops[J]. Transactions of the CSAM, 2014, 45(6): 38-46, 19. | 7 | 李林. 基于点云的农作物三维重建研究现状及展望[J]. 农业开发与装备, 2019(10): 99-101. | 7 | LI L. Research status and prospect of crop 3D reconstruction based on point cloud [J]. Agricultural Development and Equipment, 2019(10): 99-101. | 8 | LI L, ZHANG Q, HUANG D. A review of imaging techniques for plant phenotyping[J]. Sensors, 2014, 14: 20078-20111. | 9 | WULDER M A, WHITE J C, NELSON R F, et al. Lidar sampling for large-area forest characterization: A review[J]. Remote Sensing Environment, 2012, 121: 196-209. | 10 | 郭俊, 牛铮. 植被三维建模及应用进展[J]. 计算机工程与应用, 2009, 45(10): 26-29. | 10 | GUO J, NIU Z. Progress in 3D modeling and visualization of vegetation[J]. Computer Engineering and Applications, 2009, 45(10): 26-29. | 11 | 赵春江, 王功明, 郭新宇, 等. 基于交互式骨架模型的玉米根系三维可视化研究[J]. 农业工程学报, 2007, 23(9): 1-6. | 11 | ZHAO C, WANG G, GUO X, et al. 3D visualization of corn root system based on interactive framework model[J]. Transactions of the CSAE, 2007, 23(9): 1-6. | 12 | 方慧, 胡令潮, 何任涛, 等. 植物三维信息采集方法研究[J]. 农业工程学报, 2012, 28(3): 142-147. | 12 | FANG H, HU L, HE R, et al. Research on plant three-dimensional information acquisition method[J]. Transactions of the CSAE, 2012, 28(3): 142-147. | 13 | RAUMONEN P, KAASALAINEN S, KAASALAINEN M, et al. Approximation of volume and branch size distribution of trees from laser scanner data[J]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2011, 38(5): 79-84. | 14 | PAULUS S, SCHUMANN H, KUHLMANN H, et al. High-precision laser scanning system for capturing 3D plant architecture and analysing growth ofcereal plants[J]. Biosystems Engineering, 2014, 121(18):1-11. | 15 | WU S, WEN W, WANG Y, et al. MVS-pheno: A portable and low-cost phenotyping platform for maize shoots using multiview stereo 3D reconstruction[J]. Plant Phenomics, 2020, 2020(2): 1-17. | 16 | 刘占凤, 苏中滨, 郑萍, 等. 可控式大豆拓扑结构建模及其可视化模拟的方法[J]. 农机化研究, 2008(1): 183-185. | 16 | LIU Z, SU Z, ZHENG P, et al. Methods on controllable soybean topology structure modeling and its visualization study[J]. Journal of Agricultural Mechanization Research, 2008(1): 183-185. | 17 | 赵丽丽, 温维亮, 彭亚宇, 等. 幼苗期油菜几何造型研究[J]. 安徽农业科学, 2011, 39(23): 1085-1087. | 17 | ZHAO L, WEN W, PENG Y, et al. Geometric modeling of Brassica campestris L. during seedling stage[J]. Journal of Anhui Agricultural Sciences, 2011, 39(23): 14005-14007. | 18 | 彭永石. 基于双目立体视觉的番茄三维信息的测量方法[C]// 中国农业工程学会学术年会. 北京, 中国: 中国农业工程学会, 2007. | 18 | PENG Y. Measurement method of tomato 3d information based on binocular stereo vision[C]// Bi-annual Conference of Chinese Society of Agricultural Engineering. Beijing, China: Chinese Society of Agricultural Engineering, 2007. | 19 | 胡秀珍. 梨树枝干模型构建与三维实现[D]. 合肥: 中国科学技术大学, 2011. | 19 | HU X. 3D Visualization of trunk and branch model of pear tree[D]. Hefei: University of Science and Technology of China, 2011. | 20 | 王菲, 张社奇, 李丙智, 等. 高纺锤形苹果树三维重建和光照特性的评价[J]. 北方园艺, 2012(6): 10-13. | 20 | WANG F, ZHANG S, LI B, et al. Three-dimensional reconstruction of trees trained to tall spindle shape and assessment of light characteristics[J]. Northern Horticulture, 2012(6): 10-13. | 21 | 郭凯敏. 基于双目立体视觉三维重建方法的研究[D]. 哈尔滨: 东北农业大学, 2016. | 21 | GUO K. Research on the method of 3D reconstruction based on binocular stereo vision[D]. Harbin: Northeast Agricultural University, 2016. | 22 | NGUYEN T T, SLAUGHTER D C, TOWNSLEY B, et al. Comparison of structure-from-motion and stereo vision techniques for full in-field 3D reconstruction and phenotyping of plants: An investigation in sunflower[C]// ASABE International Meeting. St. Joseph, USA: The American Society of Agricultural and Biological Engineers, 2016. | 23 | DUAN T, CHAPMAN S C, HOLLAND E, et al. Dynamic quantification of canopy structure to characterize early plant vigour in wheat genotypes[J]. Journal of Experimental Botany, 2016, 67(15): 4523-4534. | 24 | HUI F, ZHU J, HU P, et al. Image-based dynamic quantification and high-accuracy 3D evaluation of canopy structure of plant populations[J]. Annals of Botany, 2018, 121(5): 1079-1088. | 25 | BISKUP B, SCHARR H, SCHURR U, et al. A stereo imaging system for measuring structural parameters of plant canopies[J]. Plant Cell & Environment, 2010, 30(10): 1299-1308. | 26 | SHAFIEKHANI A, KADAM S, FRITSCHI F B, et al. Vinobot and Vinoculer: Two robotic platforms for high-throughput field phenotyping[J]. Sensors, 2017, 17(1): 214. | 27 | 尹宏鹏, 陈波, 柴毅, 等. 基于视觉的目标检测与跟踪综述[J]. 自动化学报, 2016, 42(10): 1466-1489. | 27 | YI H, CHEN B, CHAI Y, et al. Vision-based object detection and tracking: A review[J]. IEEE/CAA Journal of Automatica Sinica, 2016, 42(10): 1466-1489. | 28 | 肖伯祥, 郭新宇, 王纪华, 等. 玉米叶片形态建模与网格简化算法研究[J]. 中国农业科学, 2007, 40(4): 693-697. | 28 | XIAO B, GUO X, WANG J, et al. Maize leaf morphological modeling and mesh simplification of surface[J]. Scientia Agricultura Sinica, 2007, 40(4): 693-697. | 29 | 程锦, 劳彩莲. 基于分段曲率的玉米植株三维结构的重建[J]. 中国农学通报, 2009, 25(24): 538-543. | 29 | CHENG J, LAO C. Three-dimensional reconstruction of maize stand based on subsegmentation on leaf midrib curvature calculation[J]. Chinese Agricultural Science Bulletin, 2009, 25(24): 538-543. | 30 | YOUNG J, DORR G J, HANAN J, et al. Surface reconstruction of wheat leaf morphology from three-dimensional scanned data[J]. Functional Plant Biology, 2015, 42(5): ID 444. | 31 | SUN S, LI C, PATERSON A H, et al. In-field high throughput phenotyping and cotton plant growth analysis using LiDAR[J]. Frontiers in Plant Science, 2018, 9: ID PMC5786533. | 32 | 胡鹏程, 郭焱, 李保国, 等. 基于多视角立体视觉的植株三维重建与精度评估[J]. 农业工程学报, 2015, 31(11): 209-214. | 32 | HU P, GUO Y, LI B, et al. Three-dimensional reconstruction and its precision evaluation of plant architecture based on multiple view stereo method[J]. Transactions of the CSAE, 2015, 31(11): 209-214. | 33 | LEE K H, EHSANI R. Comparison of two 2D laser scanners for sensing object distances, shapes, and surface patterns[J]. Computers & Electronics in Agriculture, 2008, 60(2): 250-262. | 34 | OMASA K, KONISHI A. 3D lidar imaging for detecting and understanding plant responses and canopy structure[J]. Journal of Experimental Botany, 2006, 58(4): 881-898. | 35 | 陆声链, 李帼, 吴升. 实测数据驱动的小型植物三维重建研究[J]. 郑州大学学报(理学版), 2017, 49(3): 84-87. | 35 | LU S, LI G, WU S. Data-driven 3D reconstruction of small plant structure[J]. Journal of Zhengzhou University(Natural Science Edition), 2017, 49(3): 84-87. | 36 | 方志力, 温维亮, 郭新宇, 等. 基于Kinect的三维玉米植株骨架提取[J]. 系统仿真学报, 2017, 29(3): 524-530. | 36 | FANG Z, WEN W, GUO X, et al. Skeleton extraction from three-dimensional maize based on Kinect[J]. Journal of System Simulation, 2017, 29(3): 524-530. | 37 | VáZQUEZ-ARELLANO M, GRIEPENTROG H, REISER D, et al. 3-D imaging systems for agricultural applications—A review[J]. Sensors, 2016, 16(5): ID 618. | 38 | MORENO H, VALERO C, JOSé MARíA BENGOCHEA-GUEVARA, et al. On-ground vineyard reconstruction using a LiDAR-based automated system[J]. Sensors, 2020, 20(4): ID 4. | 39 | ZHU B, LIU F, XIE Z, et al. Quantification of light interception within image-based 3-D reconstruction of sole and intercropped canopies over the entire growth season[J]. Annals of Botany, 2020, 126(4): ID 4. | 40 | BURGESS A J, RETKUTE R, POUND M P, et al. Image-based 3D canopy reconstruction to determine potential productivity in complex multi-species crop systems[J]. Annals of Botany, 2017, 119(4): 517-532. | 41 | 赵春江. 植物表型组学大数据及其研究进展[J]. 农业大数据学报, 2019, 1(2): 5-18. | 41 | ZHAO C. Big data of plant phenomics and its research progress[J]. Journal of Agricultrual Big Data, 2019, 1(2): 5-18. | 42 | METZNER R, EGGERT A, DVAN DUSSCHOTEN, et al. Direct comparison of MRI and X-ray CT technologies for 3D imaging of root systems in soil: Potential and challenges for root trait quantification[J]. Plant Methods, 2015, 11(1): 1-11. | 43 | LIVINGSTON D, TUONG T, NOGUEIRA M, et al. Three-dimensional reconstruction of soybean nodules provides an update on vascular structure[J]. American journal of Botany, 2019, 106(3): 507-513. | 44 | ZHU R, SUN K, YAN Z, et al. Analysing the phenotype development of soybean plants using low-cost 3D reconstruction[J]. Scientific Reports, 2020, 10: ID 7055 (2020). | 45 | MA X, ZHU K, GUAN H, et al. Calculation method for phenotypic traits based on the 3D reconstruction of maize canopies[J]. Sensors, 2019, 19(5): ID 1201. | 46 | THAPA S, ZHU F, WALIA H, et al. A novel LiDAR-based instrument for high-throughput, 3D measurement of morphological traits in maize and sorghum[J]. Sensors, 2018, 18(4): ID 1187. | 47 | 苏伟, 蒋坤萍, 郭浩, 等. 地基激光雷达提取大田玉米植株表型信息[J]. 农业工程学报, 2019, 35(10): 125-130. | 47 | SU W, JIANG K, GUO H, et al. Extraction of phenotypic information of maize plants in field by terrestrial laser scanning[J]. Transactions of the CSAE, 2019, 35(10): 125-130. | 48 | 李抒昊, 关海鸥, 于崧, 等. 基于FastSCAN玉米整株三维重构及参数计算方法[J]. 农机化研究, 2018, 40(4): 162-166. | 48 | LI S, GUAN H, YU S, et al. Whole 3D reconstruction based on FastSCAN corn and parameter calculation method[J]. Journal of Agricultural Mechanization Research, 2018, 40(4): 162-166. | 49 | 王勇健, 温维亮, 郭新宇, 等. 基于点云数据的植物叶片三维重建[J]. 中国农业科技导报, 2014, 16(5): 83-89. | 49 | WANG Y, WEN W, GUO X, et al. Three-dimensional reconstruction of plant leaf blade based on point cloud data[J]. Journal of Agricultural Science and Technology, 2014, 16(5): 83-89. | 50 | 刘睿, 刘婷, 董润茹, 等. 基于地基激光雷达数据的单株玉米三维建模[J]. 中国农业大学学报, 2014, 19(3): 196-201. | 50 | LIU R, LIU T, DONG R, et al. 3D modeling of maize based on terrestrial LiDAR point cloud data[J]. Journal of China Agricultural University, 2014, 19(3): 196-201. | 51 | 李辉. 基于虚拟双目视觉的玉米叶片三维重建方法[J]. 科技通报, 2016, 32(5): 96-101. | 51 | LI H. 3D reconstruction of maize leaves based on virtual visual technology[J]. Bulletin of Science and Technology, 2016, 32(5): 96-101. | 52 | 王传宇, 赵明, 阎建河, 等. 基于双目立体视觉技术的玉米叶片三维重建[J]. 农业工程学报, 2010, 26(4): 198-202. | 52 | WANG C, ZHAO M, YAN J, et al. Three-dimensional reconstruction of maize leaves based on binocular stereovision system[J]. Transactions of the CSAE, 2010, 26(4): 198-202. | 53 | 宋祺鹏, 唐晶磊, 辛菁. 基于生长模型的苗期大豆植株三维重建[J]. 计算机工程, 2017, 43(5): 275-280. | 53 | SONG Q, TANG J, XIN J. 3-dimensional reconstruction for soybean plant of seedling stage based on growth model[J]. Computer Engineering, 2017, 43(5): 275-280. | 54 | 谢秋菊, 苏中滨, 孙红敏. 大豆叶片三维重建及形变技术研究[J]. 农机化研究, 2011, 33(9): 220-223. | 54 | XIE Q, SU Z, SUN H. Research on technology for soybean leaf 3D reconstruction and deformation modeling[J]. Journal of Agricultural Mechanization Research, 2011, 33(9): 220-223. | 55 | 郑萍, 苏中滨, 康丽. 基于生长方程的虚拟大豆拓扑结构建模方法的研究[J]. 农机化研究, 2006(7): 193-195. | 55 | ZHENG P, SU Z, KANG L. Modeling of virtual soybean topology based on growth function[J]. Journal of Agricultural Mechanization Research, 2006(7): 193-195. | 56 | 史维杰, 张吴平, 郝雅洁, 等. 基于视觉三维重建的作物表型分析[J].湖北农业科学, 2019, 58(16): 125-128. | 56 | SHI W, ZHANG W, HAO Y, et al. Crop phenotypic analysis based on visual 3D reconstruction [J]. Hubei Agricultural Sciences, 2019, 58(16): 125-128. | 57 | DUAN T, CHAPMAN S C, HOLLAND E, et al. Dynamic quantification of canopy structure to characterize early plant vigour in wheat genotypes[J]. Journal of Experimental Botany, 2016, 67(15): 4523-4534. | 58 | FANG W, FENG H, YANG W N, et al. High-throughput volumetric reconstruction for 3D wheat plant architecture studies[J]. Journal of Innovative Optical Health Sciences, 2016, 9(5): ID 1650037. | 59 | 胡少军, 何东健, 耿楠, 等. 基于图像处理的小麦叶片形态的三维重建[J]. 农业工程学报, 2007, 23(1): 150-154. | 59 | HU S, HE D, GENG N, et al. 3D reconstruction of wheat lamina shape based on image processing[J]. Transactions of the CSAE, 2007, 23(1): 150-154. | 60 | 李书钦. 小麦生长模拟模型与三维可视化技术研究[D]. 北京: 中国农业科学院, 2017. | 60 | LI S. Research on wheat growth simulation model and 3D visualization technology[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017. | 61 | 李书钦, 刘海龙, 诸叶平,等. 基于实测数据和NURBS曲面的小麦叶片三维可视化[J]. 福建农业学报, 2016, 31(7): 777-782. | 61 | LI S, LIU H, ZHU Y, et al. 3-D visualization of wheat leaves using measured data and NURBS surface[J]. Fujian Journal of Agricultural Science, 2016, 31(7): 777-782. | 62 | 李书钦, 诸叶平, 刘海龙,等. 基于NURBS曲面的小麦叶片三维可视化研究与实现[J]. 中国农业科技导报, 2016, 18(3): 89-95. | 62 | LI S, ZHU Y, LIU H, et al. Research and realization of wheat leaf three-dimensional visualization based on NURBS surface[J]. Journal of Agricultural Science and Technology, 2016, 18(3): 89-95. | 63 | ZHANG H, WANG Q, ZHANG H, et al. Wheat three-dimensional reconstruction and visualization system[C]// International Conference on Computer and Computing Technologies in Agriculture. Berlin, German: Springer, 2012: 234-243. | 64 | KEMPTHORNE D M, TURNER I W, BELWARD J A, et al. Surface reconstruction of wheat leaf morphology from three-dimensional scanned data[J]. Functional Plant Biology, 2015, 42(5): 444-451. | 65 | 柏月, 汪木兰, 朱昊, 等. 基于双目视觉的棉花三维重构技术[J]. 机械设计与制造工程, 2017, 46(11): 150-154. | 65 | BAI Y, WANG M, ZHU H, et al. 3D reconstruction technology of the cotton image based on binocular vision[J]. Machine Design and Manufacturing Engineering, 2017, 46(11): 150-154. | 66 | 韩大龙. 基于双目立体视觉技术的棉株动态识别研究[D]. 石河子: 石河子大学, 2014. | 66 | HAN D. Cotton plant dynamic recognition system based on the binocular stereo vision technology[D]. Shihezi: Shihezi University, 2014. | 67 | 杨娟, 赵明, 潘学标. 基于NURBS和VC++6.0的棉花生长可视化研究[J]. 农业工程学报, 2006, 22(10): 159-162. | 67 | YANG J, ZHAO M, PAN X. Visualization of cotton growth based on NURBS and VC++6.0[J]. Transactions of the CSAE, 2006, 22(10): 159-162. | 68 | 陈超, 潘学标, 张立祯, 等. 棉花地上部生长的功能-结构模型研究[J]. 作物学报, 2012, 38(12): 2237-2245. | 68 | CHEN C, PAN X, ZHANG L, et al. Functional and structural model for above-ground growth in cotton[J]. Acta Agronomica Sinica, 2012, 38(12): 2237-2245. | 69 | 宋时德, 李淼, 张健, 等. 面向以多视角立体匹配获取的植株三维点云的去噪方法[J]. 计算机应用, 2017(S2): 141-145. | 69 | SONG S, LI M, ZHANG J, et al. Denoising method of 3D point clouds based on multi-angle stereo matching[J]. Journal of Computer Applications, 2017(S2): 141-145. | 70 | GUO Q, WU F, PANG S, ZHAO X Q, et al. Crop 3D—A LiDAR based platform for 3D high-throughput crop phenotyping[J]. Science China Life Sciences, 2018, 61(3): 1-12. | 71 | 孟耀华, 荣丽红, 仝志民, 等. 基于计算机视觉的水稻三维重建方法[J]. 黑龙江八一农垦大学学报, 2014, 26(4): 80-82. | 71 | MENG Y, RONG L, TONG Z, et al. Rice 3D reconstruction based on computer vision[J]. Journal of Heilongjiang Bayi Agricultural University, 2014, 26(4): 80-82. | 72 | 何火娇, 杨红云, 唐建军, 等. 水稻植株虚拟生长可视化系统设计及其实现[J]. 系统仿真学报, 2009, 21(14): 4393-4396. | 72 | HE H, YANG H, TANG J, et al. Design and realization of virtual growth visualization system for rice plant[J]. Journal of System Simulation, 2009, 21(14): 4393-4396. | 73 | 徐其军, 汤亮, 顾东祥, 等. 基于形态参数的水稻根系三维建模及可视化[J]. 农业工程学报, 2010, 26(10): 188-194. | 73 | XU Q, TANG L, GU D, et al. Architectural parameter-based three dimensional modeling and visualization of rice roots[J]. Transactions of the CSAE, 2010, 26(10): 188-194. | 74 | 汪丽萍, 何火娇, 杨红云. 水稻叶片三维建模与叶色渲染[J]. 计算机工程与应用, 2017, 53(24): 187-190. | 74 | WANG L, HE H, YANG H. Three-dimensional shape modeling and real-time color rendering of rice leaf[J]. Computer Engineering and Applications, 2017, 53(24): 187-190. | 75 | 张楠. 水稻序列图像在三维可视化建模及营养诊断中的应用研究[D]. 武汉: 华中农业大学, 2013. | 75 | ZHANG N. Sequence rice images in the research of 3D visualization shape and nutrition diagnosis[D]. Wuhan: Huazhong Agricultural University, 2013. | 76 | CLARK RT, MACCURDY RB, JUNG JF, et al. Three-dimensional root phenotyping with a novel imaging and software platform[J]. Plant Physiology, 2011, 156(2): 455-465. | 77 | 吴茜. 基于计算机视觉的水稻植株三维重建[D]. 南昌: 江西农业大学, 2012. | 77 | WU Q. Computer vision based 3D reconstruction of rice[D]. Nanchang: Jiangxi Agricultural University, 2012. | 78 | 史蒲娟, 翟瑞芳, 常婷婷, 等. 基于单目视觉和激光扫描技术的油菜植株模型重建及株型参数测量[J]. 华中农业大学学报, 2017, 36(3): 63-68. | 78 | SHI P, ZHAI R, CHANG T, et al. 3D model generation and phenotypic measurement of rapeseed plant based on monocular visio and laser scanning technology[J]. Journal of Huazhong Agricultural University, 2017, 36(3): 63-68. | 79 | 方慧, 杜朋朋, 胡令潮, 等. 基于可视化类库的植株三维形态配准方法及点云可视化[J]. 农业工程学报, 2013, 29(22): 180-188. | 79 | FANG H, DU P, HU L, et al. VTK-based plant 3D morphological visualization and registration[J]. Transactions of the CSAE, 2013, 29(22): 180-188. | 80 | 李冬, 林宝刚, 史同鑫, 等. 油菜植株三维结构的测量与可视化建模研究[J]. 浙江农业学报, 2013, 25(5): 926-932. | 80 | LI D, LIN B, SHI T, et al. Modeling and visualization of 3D architecture of oilseed rape (Brassica napus L.)[J]. Acta Agriculturae Zhejiangensis, 2013, 25(5): 926-932. | 81 | 欧中斌. 油菜生长可视化仿真关键技术研究[D]. 长沙: 湖南农业大学, 2007. | 81 | OU Z. Studies on the key technology of rapeseed (Brassica napus L.) Visual Growth[D]. Changsha: Hunan Agricultural University, 2007. | 82 | 岳延滨. 油菜植株形态结构模型及可视化[J]. 南京: 南京农业大学, 2010. | 82 | YUE Y. The morphological structural model and visualization of rapeseed (Brassica napus L.) plant[J]. Nanjing: Nanjing Agricultural University, 2010. | 83 | RAN N L, FILIN S, EIZENBERG H. Plant growth parameter estimation from sparse 3D reconstruction based on highly-textured feature points[J]. Precision Agriculture, 2013, 14(6): 586-605. | 84 | 董乔雪, 王一鸣, 杨丽丽, 等. 番茄三维形态结构的参数提取及模拟[J]. 农业工程学报, 2010, 26(S2):38-42. | 84 | DONG Q, WANG Y, YANG L, et al. Parameter identification of tomato 3D architectural model and simulation[J]. Transactions of the CSAE, 2010, 26(S2): 38-42. | 85 | 袁晓敏, 温维亮, 郭新宇, 等. 番茄群体冠层形态结构三维模拟——基于实测数据[J]. 农机化研究, 2012, 34(2): 172-176. | 85 | YUAN X, WEN W, GUO X, et al. Three-dimensional simulation of tomato canopy morphological structure based on measured data[J]. Journal of Agricultural Mechanization Research, 2012, 34(2): 172-176. | 86 | 袁晓敏, 赵春江, 温维亮,等. 番茄植株三维形态精确重构研究[J]. 农业机械学报, 2012, 43(12): 204-210. | 86 | YUAN X, ZHAO C, WEN W, et al. Detailed modeling of 3-D configuration of tomato plant[J]. Transactions of the CSAM, 2012, 43(12): 204-210. | 87 | 辛龙娇, 徐立鸿, 李大威, 等. 基于参数L-系统的温室番茄植株的三维重建[J]. 现代农业科技, 2014(3): 340-343. | 87 | XIN L, XU L, LI D, et al. 3D reconstruction of greenhouse tomato plant based on parametric L-system[J]. Modern Agricultural Sciences and Technology, 2014(3): 340-343. | 88 | 刘刚, 张雪, 宗泽,等. 基于深度信息的草莓三维重建技术[J]. 农业机械学报, 2017, 48(4): 160-165. | 88 | LIU G, ZHANG X, ZONG Z, et al. 3D reconstruction of strawberry based on depth information[J]. Transactions of the CSAM, 2017, 48(4): 160-165. | 89 | 张雪, 郭彩玲, 宗泽,等. 基于轮廓分割的草莓叶片三维建模[J]. 农业工程学报, 2017, 33(S1): 206-211. | 89 | ZHANG X, GUO C, ZONG Z, et al. 3D reconstruction of strawberry leaves based on contour segmentation[J]. Transactions of the CSAE, 2017, 33(S1): 206-211. | 90 | 赵丽丽, 温维亮, 郭新宇, 等. 草莓三维形态几何建模与真实感绘制[J]. 中国农学通报, 2011, 27(6): 201-205. | 90 | ZHAO L, WEN W, GUO X, et al. Techniques for modeling 3-D shape and realistic rendering of strawberry[J]. Chinese Agricultural Science Bulletin, 2011, 27(6): 201-205. | 91 | 祁力钧, 梁霞, 冀荣华,等. 基于超声波传感技术的温室草莓冠层三维重构与测量[J]. 农业机械学报, 2013, 44(9): 199-203. | 91 | QI L, LIANG X, JI R, et al. 3-D reconstruction and measurement of greenhouse strawberry canopy based on ultrasonic sensors[J]. Transactions of the CSAM, 2013, 44(9): 199-203. | 92 | 陈学峰, 郭新宇, 周淑秋,等. 基于仿射变换的植物切片图像配准及三维重建[J]. 农机化研究, 2009, 31(7): 82-85. | 92 | CHEN X, GUO X, ZHOU S, et al. Plant slices' image registration based on affine transformation and 3D reconstruction[J]. Journal of Agricultural Mechanization Research, 2009, 31(7): 82-85. | 93 | 胡鹏程, 郭焱, 李保国, 等. 基于多视角立体视觉的植株三维重建与精度评估[J]. 农业工程学报, 2015, 31(11): 209-214. | 93 | HU P, GUO Y, LI B, et al. Three-dimensional reconstruction and its precision evaluation of plant architecture based on multiple view stereo method[J]. Transactions of the CSAE, 2015, 31(11): 209-214. | 94 | 杨沛, 何东健. 基于参数L-系统的黄瓜苗期生长可视化研究[J]. 农机化研究, 2010, 32(8): 181-185. | 94 | YANG P, HE D. A study on visualization of cucumber growth at seedling stage based on parametric L-system[J]. Journal of Agricultural Mechanization Research, 2010, 32(8): 181-185. | 95 | 方小勇, 郭新宇, 王丹虹, 等. 黄瓜叶几何造型研究[J]. 计算机工程与应用, 2006, 42(32): 183-184. | 95 | FANG X, GUO X, WANG D, et al. Geometry modeling of cucumber leaf[J]. Computer Engineering and Applications, 2006, 42(32): 183-184. | 96 | 杨亮, 郭新宇, 陆声链, 等. 基于多幅图像的黄瓜叶片形态三维重建[J]. 农业工程学报, 2009, 25(2): 141-144. | 96 | YANG L, GUO X, LU S, et al. 3D morphological reconstruction of cucumber leaf based on multiple images[J]. Transactions of the CSAE, 2009, 25(2): 141-144. | 97 | 陆声链, 李帼, 吴升. 实测数据驱动的小型植物三维重建研究[J]. 郑州大学学报(理学版), 2017, 49(3): 84-87. | 97 | LU S, LI G, WU S. Data-driven 3D reconstruction of small plant structure[J]. Journal of Zhengzhou University(Natural Science Edition), 2017, 49(3): 84-87. | 98 | 乔桂新, 温维亮, 彭亚宇, 等. 辣椒植株三维重构与可视化研究[J]. 计算机工程与设计, 2012, 33(4): 1499-1503. | 98 | QIAO G, WEN W, PENG Y, et al. Research on three-dimensional geometric morphological modeling and visualization of pepper[J]. Computer Engineer and Design, 2012, 33(4): 1499-1503. | 99 | 赵泽英, 岳延滨, 聂克艳, 等. 辣椒叶片形态模拟模型研究(英文)[J]. 贵州农业科学. 2012, 40(5): 182-186. | 99 | ZHAO Z, YUE Y, NIE K, et al. Study on morphological simulation models of chili pepper leaves[J]. Guizhou Agricultural Sciences, 2012, 40(5): 182-186. | 100 | 郭明伟. 基于智能虚拟器官的植物建模关键技术研究[D]. 重庆: 重庆大学, 2010. | 100 | GUO M. Research on key technologies of plant modelling based on intelligent virtual organ[D]. Chongqing: Chongqing University, 2010. | 101 | 温维亮, 郭新宇, 王勇健, 等. 葡萄树地上部形态结构数据获取方法[J]. 农业工程学报, 2015, 31(22): 161-168. | 101 | WEN W, GUO X, WANG Y, et al. Morphological and structural data acquisition for above-ground part of grapevine[J]. Transactions of the CSAE, 2015, 31(22): 161-168. | 102 | 温维亮, 郭新宇, 肖伯祥, 等. 基于模板的生菜参数化几何建模方法[J]. 中国农学通报, 2011, 27(6): 459-463. | 102 | WEN W, GUO X, XIAO B, et al. The parametric geometric modeling method for lettuce based-template[J]. Chinese Agricultural Science Bulletin, 2011, 27(6): 459-463. | 103 | 孔繁爽, 伍艳莲, 姜海燕. 基于图像特征提取的生菜形态可视化建模[J]. 安徽农业科学, 2015(24): 265-268. | 103 | KONG F, WU Y, JIANG H. Visual modeling of lettuce form based on image feature extraction[J]. Journal of Anhui Agricultural Sciences, 2015, 43(24): 265-268, 278. | 104 | 王芸芸, 温维亮, 郭新宇,等. 基于球B样条函数的烟草叶片虚拟实现[J]. 农业工程学报, 2011, 27(1): 230-235. | 104 | WANG Y, WEN W, GUO X, et al. Virtual realization of tobacco leaves based on ball B-spline function[J]. Transactions of the CSAE, 2011, 27(1): 230-235. | 105 | 王芸芸, 温维亮, 郭新宇, 等. 烟草地上部植株三维重构与可视化[J]. 中国农业科学, 2013, 46(1): 37-44. | 105 | WANG Y, WEN W, GUO X, et al. Research on three-dimensional reconstruction and visualization of above-ground tobacco plant[J]. Scientia Agricultura Sinica, 2013, 46(1): 37-44. | 106 | ZHAO L, ZHAO C, ZHOU L, et al. Analysis on rice production in China[J]. Agricultural Science & Technology, 2016, 17(1): 78-80, 105. | 107 | 张军, 陆继海. 水稻高产栽培技术分析[J]. 吉林农业, 2010(9): 111. | 107 | ZHANG J, LU J. Analysis on high yield cultivation techniques of rice[J]. Jilin Agriculture, 2010(9): 111. | 108 | 章秀福, 王丹英, 方福平, 等. 中国粮食安全和水稻生产[J]. 农业现代化研究, 2005, 26(2): 85-88. | 108 | ZHANG X, WANG D, FANG F, et al. Food safety and rice production in China[J]. Research of Agricultural Modernization, 2005, 26(2): 85-88. | 109 | 崔太昌, 陈峰, 李华东, 等. 山东省水稻产业发展现状与科技需求分析[J]. 山东农业工程学院学报, 2015, 32(6): 24-26. | 109 | CUI T, CHEN F, LI H, et al. Analysis on the development status of rice industry and the demand of science and technology in Shandong province[J]. The Journal of Shandong Agricultural Engineering College, 2015, 32(6): 24-26. | 110 | 刘江南, 魏军华, 向宝玉. 试论油菜种植技术的应用与推广[J]. 新农业, 2018(1): 35-37. | 110 | LIU J, WEI J, XIANG B. On the application and promotion of rapeseed planting technology[J]. New Agricultural, 2018(1): 35-37. | 111 | 韩民. 旱地番茄优质高产栽培技术分析[J]. 科学与财富, 2017(8): 170. | 111 | HAN M. Analysis on cultivation techniques of high quality and high yield of tomato in dry land[J]. Science & Wealth, 2017(8): 170. | 112 | 温维亮, 赵春江, 郭新宇, 等. 基于t分布函数的玉米群体三维模型构建方法[J]. 农业工程学报, 2018, 34(4): 192-200. | 112 | WEN W, ZHAO C, GUO X, et al. Construction method of three-dimensional model of maize colony based on t-distribution function[J]. Transactions of the CSAE, 2018, 34(4): 192-200. | 113 | 牛顺义. 基于双目视觉的棉花识别与定位系统研究[D]. 合肥: 安徽农业大学, 2016. | 113 | NIU S. Cotton identification and positioning system based on binocular vision[D]. Hefei: Anhui Agricultural University, 2016. | 114 | 周娟, 周治国, 陈兵林, 等. 基于形态模型的棉花(Gossypium hirsutum L.)虚拟生长系统研究[J]. 中国农业科学, 2009, 42(11): 3843-3851. | 114 | ZHOU J, ZHOU Z, CHEN B, et al. Morphogenesis model-based virtual growth system of cotton (Gossypium hirsutum L.)[J]. Scientia Agricultura Sinica, 2009, 42(11): 3843-3851. | 115 | 孟军, 陈温福, 王嘉宇. 水稻群体冠层三维结构的计算机模拟分析[J]. 沈阳农业大学学报, 2007, 38(1): 8-13. | 115 | MENG J, CHEN W, WANG J. Computer simulation of 3-dimentional structure of rice canopy[J]. Journal of Shenyang Agricultural University, 2007, 38(1): 8-13. | 116 | 冯佳睿, 马晓丹, 关海鸥, 等. 基于深度信息的大豆株高计算方法[J]. 光学学报, 2019, 39(5): 1-11. | 116 | FENG J, MA X, GUAN H, et al. Calculation method of soybean plant height based on depth information[J]. Acta Optica Sinica, 2019, 39(5): 1-11. | 117 | 张洁, 杨伟伟, 容新民,等. 构建不同树形葡萄树体结构的三维虚拟模型[J]. 新疆农业科学, 2021, 58(2): 11. | 117 | ZHANG J, YANG W, RONG X, et al. Digital study on the canopy structure of grape with different tree shapes[J]. Xinjiang Agricultural Sciences, 2021, 58(2): 11. | 118 | BIETRESATO M, CARABIN G, VIDONI R, et al. Evaluation of a LiDAR-based 3D-stereoscopic vision system for crop-monitoring applications[J]. Computers and Electronics in Agriculture, 2016, 124: 1-13. | 119 | DUSSCHOTEN VAN, METZNER R, KOCHS J, et al. Quantitative 3D analysis of plant roots growing in soil using magnetic resonance imaging[J]. Plant physiology, 2016, 170(3): 1176-1188. | 120 | MAIRHOFER S, ZAPPALA S, TRACY S, et al. Recovering complete plant root system architectures from soil via X-ray μ-computed tomography[J]. Plant methods, 2013, 9(1): 1-7. | 121 | PFEIFER J, KIRCHGESSNER N, COLOMBI T, et al. Rapid phenotyping of crop root systems in undisturbed field soils using X-ray computed tomography[J]. Plant methods, 2015, 11(1): 1-8. | 122 | PFLUGFELDER D, METZNER R, DVAN DUSSCHOTEN, et al. Non-invasive imaging of plant roots in different soils using magnetic resonance imaging (MRI)[J]. Plant Methods, 2017, 13(1): 1-9. | 123 | LE MARIé C, KIRCHGESSNER N, MARSCHALL D, et al. Rhizoslides: Paper-based growth system for non-destructive, high throughput phenotyping of root development by means of image analysis[J]. Plant Methods, 2014, 10(1): 1-16. | 124 | GALKOVSKYI T, MILEYKO Y, BUCKSCH A, et al. GiA Roots: Software for the high throughput analysis of plant root system architecture[J]. BMC Plant Biology, 2012, 12(1): 116. | 125 | METZNER R, DVAN DUSSCHOTEN, BüHLER J, et al. Belowground plant development measured with magnetic resonance imaging (MRI): Exploiting the potential for non-invasive trait quantification using sugar beet as a proxy[J]. Frontiers in Plant Science, 2014, 5: 469. | 126 | ZAPPALA S, HELLIWELL J R, TRACY S R, et al. Effects of X-ray dose on rhizosphere studies using X-ray computed tomography[J]. PloS One, 2013, 8(6): ID e67250. | 127 | 毛罕平, 刘洋, 徐静云, 等. 基于μCT的番茄穴盘苗根系结构及分布特征[J]. 江苏大学学报(自然科学版), 2019, 40(3): 45-51. | 127 | MAO H, LIU Y, XU J, et al. Root structure and distribution characteristics of tomato hole disk seedlings based on μCT [J]. Journal of Jiangsu University (Natural Science Edition), 2019, 40 (3): 45-51. | 128 | 厉翔, 丁启朔, 陈信信, 等. 大田群体小麦根系构型3D拓扑表型的参数化[J]. 江苏农业学报, 2020, 36(4): 142-147. | 128 | LI X, DING Q, CHEN X, et al. Parameterization of 3D topological phenotype of wheat root system architecture in field population[J]. Jiangsu Journal of Agricultural Sciences, 2020, 36(4): 142-147. | 129 | TENG X, ZHOU G, WU Y, et al. 3D Reconstruction method of rapeseed plants in the whole growth period using RGB-D camera[J]. Sensors, 2021, 21: ID 4628. | 130 | GUAN X,WANG J,ZHOU Y, et al.High-throughput visible image transmission design based on the X-CT root 3D reconstruction system[C]// EAI GreeNets 2021. Dalian, China: EAI, 2021. | 131 | WEN W, WANG Y, WU S, et al. 3D phytomer-based geometric modelling method for plants—The case of maize[J]. AoB Plants, 2021, 13(5): ID plab055. | 132 | DONNé S, LUONG H, DHONDT S, et al. 3D reconstruction of maize plants in the phenoVision system[C]// Knowledge For Growth. Ghent, Belgium: UGent publication. 2016. | 133 | 慧诺瑞德(北京)科技有限公司. 盆栽植物数字性状测量系统[EB/OL]. (2020-10-04)[2021-11-01]. . | 134 | APELT F, BREUER D, NIKOLOSKI Z, et al. Phytotyping4D: A light‐field imaging system for non‐invasive and accurate monitoring of spatio‐temporal plant growth[J]. Plant Journal, 2015, 82: 693-706. | 135 | CIESLAK M, PRUSINKIEWICZ P. Gillespie-Lindenmayer systems for stochastic simulation of morphogenesis[J]. in silico Plants, 2019, 1(1): ID diz009. | 136 | DE WIT C T. Photosynthesis of leaf canopies[R]. Agnc Res Report. 1965 | 137 | 赵春江. 智慧农业发展现状及战略目标研究[J]. 智慧农业, 2019, 1(1): 1-7. | 137 | ZHAO C. State-of-the-art and recommended developmental strategic objectives of smart agriculture[J]. Smart Agriculture, 2019, 1(1): 1-7. | 138 | 孙凯. 基于三维重构的普兰种业主栽大豆种植密度的优化研究[D]. 哈尔滨: 东北农业大学, 2019. | 138 | SUN K. Research on the optimization of planting density based on 3D reconstruction for soybean planted by PuLan seed company[D]. Harbin: Northeast Agricultural University, 2019. | 139 | BIETRESATO M, CARABIN G, VIDONI R, et al. Evaluation of a LiDAR-based 3D-stereoscopic vision system for crop-monitoring applications[J]. Computers and Electronics in Agriculture, 2016, 124: 1-13. |
|