1 |
傅锡敏, 吕晓兰, 丁为民. 我国果园植保机械现状与技术需求[J]. 新疆农机化, 2011(1): 61-63.
|
|
FU X, LYU X, DING W. Current situation and technical demand of orchard plant protection machinery in China[J]. Xinjiang Agricultural Mechanization, 2011(1): 61-63.
|
2 |
BADULES J, VIDAL M, BONÉ A, et al. Comparative study of CFD models of the air flow produced by an air-assisted sprayer adapted to the crop geometry[J]. Computers and Electronics in Agriculture, 2018, 149: 166-174.
|
3 |
何雄奎. 中国精准施药技术和装备研究现状及发展建议[J]. 智慧农业(中英文), 2020, 2(1): 133-146.
|
|
HE X. Research progress and developmental recommendations on precision spraying technology and equipment in China[J]. Smart Agriculture, 2020, 2(1):133-146.
|
4 |
张燕妮, 翟长远, 赵娟. 果园风场与雾场测量建模方法[J]. 农机化研究, 2020, 42(4): 264-268.
|
|
ZHANG Y, ZHAI C, ZHAO J. Modeling and measuring method of orchard airflow and droplet field[J]. Journal of Agricultural Mechanization Research, 2020, 42(4): 264-268.
|
5 |
PFEIFFER S A, GUEVARA J, CHEEIN F A, et al. Mechatronic terrestrial LiDAR for canopy porosity and crown surface estimation[J]. Computers and Electronics in Agriculture, 2018, 146: 104-113.
|
6 |
GIL E, ARNO J, LLORENS J, et al. Advanced technologies for the improvement of spray application techniques in Spanish viticulture: An overview[J]. Sensors, 2014, 14(1): 691-708.
|
7 |
PETROVIĆ D. Odnos selektivnog i konvencionalnog raspršivanja te njihov utjecaj na depozit i zanošenje tekućine[D]. Osijek: Josip Juraj Strossmayer University of Osijek, 2018.
|
8 |
GRELLA M, MARUCCO P, MANZONE M, et al. Effect of sprayer settings on spray drift during pesticide application in poplar plantations (Populus spp.)[J]. Science of the Total Environment, 2017, 578: 427-439.
|
9 |
康峰, 吴潇逸, 王亚雄, 等. 农药雾滴沉积特性研究进展与展望[J]. 农业工程学报, 2021, 37(20): 1-14.
|
|
KANG F, WU X, WANG Y, et al. Research progress and prospect of pesticide droplet deposition characteristics[J]. Transactions of the CSAE, 2021, 37(20): 1-14.
|
10 |
WU B, HUANG K, QING D, et al. Numerical simulation and optimization of perforated tube trolley in circular cooler[J]. World Journal of Engineering and Technology, 2017, 5(4): 684-695.
|
11 |
邱威, 丁为民, 汪小旵, 等. 3WZ-700 型自走式果园风送定向喷雾机[J]. 农业机械学报, 2012, 43(4): 26-30, 44.
|
|
QIU W, DING W, WANG X, et al. 3WZ-700 self-propelled air-blowing orchard sprayer[J]. Transactions of the CSAM, 2012, 43(4): 26-30, 44.
|
12 |
周良富, 傅锡敏, 丁为民, 等. 组合圆盘式果园风送喷雾机设计与试验[J]. 农业工程学报, 2015, 31(10): 64-71.
|
|
ZHOU L, FU X, DING W, et al. Design and experiment of combined disc air-assisted orchard sprayer[J]. Transactions of the CSAE, 2015, 31(10): 64-71.
|
13 |
陈帮.离心风机进气箱导流板的优化设计[J]. 煤矿机械, 2022, 43(2):130-134.
|
14 |
丁天航, 曹曙明, 薛新宇, 等. 果园喷雾机单双风机风道气流场仿真与试验[J]. 农业工程学报, 2016, 32(14): 62-68, 315.
|
|
DING T, CAO S, XUE X, et al. Simulation and experiment on single-channel and double-channel airflow field of orchard sprayer[J]. Transactions of the CSAE, 2016, 32(14): 62-68, 315.
|
15 |
ENDALEW A M, DEBAERB C, RUTTEN N, et al. A new integrated CFD modelling approach towards air-assisted orchard spraying—Part I: Model development and effect of wind speed and direction on sprayer airflow[J]. Computers and Electronics in Agriculture, 2010, 71(1): 128-136.
|
16 |
NUYTTENS D, ZWERTVAEGHER I K A, DEKEYSER D. Spray drift assessment of different application techniques using a drift test bench and comparison with other assessment methods[J]. Biosystems Engineering, 2017, 154: 14-24.
|
17 |
BADULES J, VIDAL M, BONÉ A, et al. Comparative study of CFD models of the air flow produced by an air-assisted sprayer adapted to the crop geometry[J]. Computers and Electronics in Agriculture, 2018, 149: 166-174.
|
18 |
HONG S W, ZHAO L, ZHU H. CFD simulation of airflow in side tree canopies discharged from air-assisted sprayers[J]. Computers and Electronics in Agriculture, 2017, 149: 121-132.
|
19 |
ZHENG Y, YANG S, LIU X, et al. The computational fluid dynamic modeling of downwash flow field for a six-rotor UAV[J]. Frontiers of Agricultural Science and Engineering, 2018, 5(2): 159-167.
|
20 |
HOŁOWNICKI R, DORUCHOWSKI G, ŚWIECHOWSKI W, et al. Variable air assistance system for orchard sprayers: Concept, design and preliminary testing[J]. Biosystems Engineering, 2017, 163: 134-149.
|
21 |
翟长远, 张燕妮, 窦汉杰, 等. 果园风送喷雾机出风口风场CFD建模与试验[J]. 智慧农业(中英文) 2021, 3(3): 70-81.
|
|
ZHAI C, ZHANG Y, DOU H, et al. CFD modeling and experiment of airflow at the air outlet of orchard air-assisted sprayer[J]. Smart Agriculture, 2021, 3(3): 70-81.
|
22 |
李建平, 边永亮, 杨欣, 等. 果园多风机风送喷雾机作业参数优化与试验[J]. 吉林大学学报(工学版), 2022, 52(10): 2474-2485.
|
|
LI J, BIAN Y, YANG X, et al. Operational parameter optimization and testing of an air-assisted multi-fan orchard sprayer[J]. Journal of Jilin University (Engineering Edition), 2022, 52(10): 2474-2485.
|
23 |
姜宗月. 果园定向仿形弥雾机的研制与试验[D]. 泰安: 山东农业大学, 2014.
|
|
JIANG Z. Development and experiment of directional profiling orchard mist sprayer[D]. Taian: Shandong Agricultural University, 2014.
|
24 |
戴奋奋. 风送喷雾机风量的选择与计算[J]. 植物保护, 2008(6): 124-127.
|
|
DAI F. Selection and calculation of the blowing rate of air-assisted sprayers[J]. Plant Protection, 2008(6): 124-127.
|