Smart Agriculture ›› 2021, Vol. 3 ›› Issue (1): 109-117.doi: 10.12133/j.smartag.2021.3.1.202009-SA004
• Information Processing and Decision Making • Previous Articles Next Articles
QIU Wenjie1(), YE Jin1(
), HU Liangqing1, YANG Juan2, LI Qili3, MO Jianyou3, YI Wanmao1
Received:
2020-09-29
Revised:
2020-12-03
Online:
2021-03-30
Published:
2021-06-01
corresponding author:
Jin YE
E-mail:qiuwenjie1997@163.com;yejin@gxu.edu.cn
CLC Number:
QIU Wenjie, YE Jin, HU Liangqing, YANG Juan, LI Qili, MO Jianyou, YI Wanmao. Distilled-MobileNet Model of Convolutional Neural Network Simplified Structure for Plant Disease Recognition[J]. Smart Agriculture, 2021, 3(1): 109-117.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.smartag.net.cn/EN/10.12133/j.smartag.2021.3.1.202009-SA004
Table 5
The performance of knowledge distillation on different teacher/student models
学生模型 | 教师模型 | 准确率/% | 模型内存/MB | 体积降低/% | 识别时间/ ms | |||
---|---|---|---|---|---|---|---|---|
教师 | 学生 | 教师 | 学生 | 教师 | 学生 | |||
MobileNet | VGG16 | 95.50 | 97.54 | 304.0 | 20.8 | 93.16 | 1635 | 261 |
AlexNet | 93.56 | 94.89 | 356.6 | 21.0 | 94.11 | 490 | 254 | |
GoogleNet | 92.19 | 94.70 | 36.6 | 20.9 | 42.90 | 487 | 260 | |
ResNet | 95.36 | 95.16 | 179.8 | 21.0 | 88.32 | 928 | 249 | |
平均 | —— | —— | —— | —— | 79.62 | —— | —— |
Table 6
Model performance testing in real environment
识别模型 | 单个病害识别率/% | 平均准确率/% | 内存占用/MB | 平均识别时间/s | 总识别时间/s | |
---|---|---|---|---|---|---|
芒果白粉病 | 芒果炭疽病 | |||||
VGG16 | 95.68 | 94.55 | 95.15 | 309.98 | 1.652 | 15,636 |
AlexNet | 94.51 | 94.77 | 94.64 | 359.43 | 0.494 | 4675 |
GoogleNet | 94.03 | 95.14 | 94.58 | 37.49 | 0.487 | 4609 |
ResNet | 94.17 | 93.20 | 93.68 | 183.47 | 0.943 | 8925 |
Distilled-MobileNet | 97.59 | 97.65 | 97.62 | 19.83 | 0.218 | 2063 |
1 | KAMILARIS A, PRENAFETA-BOLDÚ F X. A review of the use of convolutional neural networks in agriculture[J]. The Journal of Agricultural Science, 2018, 156(3): 312-322. |
2 | KARLEKAR A, SEAL A. SoyNet: Soybean leaf diseases classification[J]. Computers and Electronics in Agriculture, 2020, 172: ID 105342. |
3 | TETILA E C, MACHADO B B, MENEZES G K, et al. Automatic recognition of soybean leaf diseases Using UAV images and deep convolutional neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2019, 17(5): 903-907. |
4 | ADEEL A, KHAN M A, AKRAM T, et al. Entropy controlled deep features selection framework for grape leaf diseases recognition[J]. Expert Systems, 2020(1): DOI: 10.1111/exsy.12569. |
5 | ZHANG X, QIAO Y, MENG F, et al. Identification of maize leaf diseases using improved deep convolutional neural networks[J]. IEEE Access, 2018(6): 30370-30377. |
6 | 陈桂芬, 赵姗, 曹丽英, 等.基于迁移学习与卷积神经网络的玉米植株病害识别[J]. 智慧农业, 2019, 1(2): 34-44. |
CHEN G, ZHAO S, CAO L, et al. Corn plant disease recognition based on migration learning and convolutional neural network[J]. Smart Agriculture, 2019, 1(2): 34-44. | |
7 | 吴华瑞. 基于深度残差网络的番茄叶片病害识别方法[J]. 智慧农业, 2019, 1(4): 42-49. |
WU H. Method of tomato leaf diseases recognition method based on deep residual network[J]. Smart Agriculture, 2019, 1(4): 42-49. | |
8 | 雷小康, 尹志刚, 赵瑞莲. 基于FPGA的卷积神经网络定点加速[J]. 计算机应用, 2020, 40(10): 2811-2816. |
LEI X, YIN Z, ZHAO R. FPGA-based convolutional neural network fixed-point acceleration[J]. Computer Applications, 2020, 40(10): 2811-2816. | |
9 | HAN R, LIU C, LI S, et al. Accelerating deep learning systems via critical set identification and model compression[J]. IEEE Transactions on Computers, 2020, 69(7): 1059-1070. |
10 | RAHMAN C R, ARKO P S, ALI M E, et al. Identification and recognition of rice diseases and pests using convolutional neural networks[EB/OL]. arXiv:1812.01 |
043v3 [cs.CV] 4 Mar2020. | |
11 | SHIH K H, CHIU C, LIN J A, et al. Real-time object detection with reduced region proposal network via multi-feature concatenation[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31: 2164-2173. |
12 | HC A, YL A, KCY B, et al. Block change learning for knowledge distillation[J]. Information Sciences, 2020, 513: 360-371. |
13 | WU M, CHIU C, WU K. Multi-teacher knowledge distillation for compressed video action recognition based on deep learning[C]// ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Piscataway, New York, USA: IEEE, 2019. |
14 | HUGHES D P, SALATHE M. An open access repository of images on plant health to enable the development of mobile disease diagnostics[EB/OL]. 2015. arXiv:1511. |
08060 [cs.CY]. | |
15 | HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[EB/OL]. Computer Science, 2015. arXiv:1503. |
02531 [stat.ML]. | |
16 | SHORTEN C, KHOSHGOFTAAR T M. A survey on image data augmentation for deep learning[J]. Journal of Big Data, 2019, 6(1): ID 60. |
17 | RADFORD A, METZ L, CHINTALA S. Unsupervised representation learning with deep convolutional generative adversarial networks[EB/OL]. 2015. arXiv:1511.06434v |
18 | cs.LG] 19 Nov 2015. |
19 | WENG L, PRENEEL B. A secure perceptual hash algorithm for image content authentication[C]// 12th IFIP TC 6/TC 11 International Conference on Communications and Multimedia Security. Berlin Heidelberg, German: Springer Verlag, 2011: 108-121. |
20 | PAN S J, YANG Q. A survey on transfer learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 22(10): 1345-1359. |
21 | HOWARD A G, ZHU M, CHEN B, et al. MobileNets: Efficient convolutional neural networks for mobile vision applications[EB/OL]. 2017. arXiv:1704. |
04861 [cs.CV]. | |
22 | KAILATH T. The divergence and Bhattacharyya distance measures in signal selection[J]. IEEE Transactions on Communication Technology, 1967, 15(1): 52-60. |
23 | ASHOK A, RHINEHART N, BEAINY F, et al. N2N learning: Network to network compression via policy Gradient Reinforcement Learning[C]// 6th International Conference on Learning Representations, ICLR 2018. Vancouver, BC, Canada: International Conference on Learning Representations, ICLR, 2018. |
24 | CHEBOTAR Y, WATERS A. Distilling knowledge from ensembles of neural networks for speech recognition[C]// Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH. San Francisco, CA, United States: International Speech Communication Association, 2016: 3439-3433. |
[1] | SHAO Mingyue, ZHANG Jianhua, FENG Quan, CHAI Xiujuan, ZHANG Ning, ZHANG Wenrong. Research Progress of Deep Learning in Detection and Recognition of Plant Leaf Diseases [J]. Smart Agriculture, 2022, 4(1): 29-46. |
[2] | YANG Guofeng, HE Yong, FENG Xuping, LI Xiyao, ZHANG Jinnuo, YU Zeyu. Methods and New Research Progress of Remote Sensing Monitoring of Crop Disease and Pest Stress Using Unmanned Aerial Vehicle [J]. Smart Agriculture, 2022, 4(1): 1-16. |
[3] | ZHOU Qiaoli, MA Li, CAO Liying, YU Helong. Identification of Tomato Leaf Diseases Based on Improved Lightweight Convolutional Neural Networks MobileNetV3 [J]. Smart Agriculture, 2022, 4(1): 47-56. |
[4] | WANG Ying, LI Yue, WU Tingting, SUN Shi, WANG Minjuan. Fast Counting Method of Soybean Seeds Based on Density Estimation and VGG-Two [J]. Smart Agriculture, 2021, 3(4): 111-122. |
[5] | LI Zhijun, YANG Shenghui, SHI Deshuai, LIU Xingxing, ZHENG Yongjun. Yield Estimation Method of Apple Tree Based on Improved Lightweight YOLOv5 [J]. Smart Agriculture, 2021, 3(2): 100-114. |
[6] | FLORES Paulo, ZHANG Zhao. Wheat Lodging Ratio Detection Based on UAS Imagery Coupled with Different Machine Learning and Deep Learning Algorithms [J]. Smart Agriculture, 2021, 3(2): 23-34. |
[7] | LI Liangde, WANG Xiujuan, KANG Mengzhen, HUA Jing, FAN Menghan. Agricultural Named Entity Recognition Based on Semantic Aggregation and Model Distillation [J]. Smart Agriculture, 2021, 3(1): 118-128. |
[8] | WEI Jing, WANG Yuting, YUAN Huizhu, ZHANG Menglei, WANG Zhenying. Identification and Morphological Analysis of Adult Spodoptera Frugiperda and Its Close Related Species Using Deep Learning [J]. Smart Agriculture, 2020, 2(3): 75-85. |
[9] | FLORES Paulo, ZHANG Zhao, MATHEW Jithin, JAHAN Nusrat, STENGER John. Distinguishing Volunteer Corn from Soybean at Seedling Stage Using Images and Machine Learning [J]. Smart Agriculture, 2020, 2(3): 61-74. |
[10] | GUO Wei, WU Huarui, ZHU Huaji. Design and Application of Facility Greenhouse Image Collecting and Environmental Data Monitoring Robot System [J]. Smart Agriculture, 2020, 2(3): 48-60. |
[11] | LI Hualong, LI Miao, ZHAN Kai, LIU Xianwang, YANG Xuanjiang, HU Zelin, GUO Panpan. Construction Method and Performance Test of Prediction Model for Laying Hen Breeding Environmental Quality Evaluation [J]. Smart Agriculture, 2020, 2(3): 37-47. |
[12] | Zhou Chengquan, Ye Hongbao, Yu Guohong, Hu Jun, Xu Zhifu. A fast extraction method of broccoli phenotype based on machine vision and deep learning [J]. Smart Agriculture, 2020, 2(1): 121-132. |
[13] | Xia Xue, Sun Qixin, Shi Xiao, Chai Xiujuan. Apple detection model based on lightweight anchor-free deep convolutional neural network [J]. Smart Agriculture, 2020, 2(1): 99-110. |
[14] | Wu Huarui. Method of tomato leaf diseases recognition method based on deep residual network [J]. Smart Agriculture, 2019, 1(4): 42-49. |
[15] | Chen Guifen, Zhao Shan, Cao Liying, Fu Siwei, Zhou Jiaxin. Corn plant disease recognition based on migration learning and convolutional neural network [J]. Smart Agriculture, 2019, 1(2): 34-44. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||