Smart Agriculture ›› 2024, Vol. 6 ›› Issue (5): 153-163.doi: 10.12133/j.smartag.SA202406014
• Technology and Method • Previous Articles
NIAN Yue, ZHAO Kaixuan, JI Jiangtao(
)
Received:2024-06-14
Online:2024-09-30
Foundation items:National Key Research and Development Program(2023YFD2000702); Henan Province International Science and Technology Cooperation Project(232102521006); Henan Province University Science and Technology Innovation Talent Project(24HASTIT052)
About author:corresponding author:
CLC Number:
NIAN Yue, ZHAO Kaixuan, JI Jiangtao. Cow Hoof Slippage Detecting Method Based on Enhanced DeepLabCut Model[J]. Smart Agriculture, 2024, 6(5): 153-163.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.smartag.net.cn/EN/10.12133/j.smartag.SA202406014
Table 1
Performance comparison of different backbone network models of detecting cow hoof slippage
| 网络模型 | 训练集误差/pixel | 验证集误差/pixel | 模型大小/MB | 帧率/(f/s) |
|---|---|---|---|---|
| ResNet-50 | 2.69 | 3.31 | 98.00 | 35.72 |
| ResNet-101 | 2.90 | 3.61 | 170.50 | 27.71 |
| ResNet-152 | 2.73 | 3.35 | 230.60 | 20.57 |
| MobileNet-V2-0.35 | 4.73 | 5.01 | 4.50 | 48.00 |
| MobileNet-V2-0.5 | 4.15 | 4.34 | 15.60 | 48.00 |
| MobileNet-V2-0.75 | 4.04 | 4.61 | 26.50 | 40.00 |
| MobileNet-V2-1.0 | 4.00 | 4.46 | 52.30 | 36.00 |
| EfficientNet-b0 | 3.00 | 3.53 | 19.50 | 33.19 |
| EfficientNet-b3 | 3.65 | 4.03 | 47.08 | 23.22 |
| EfficientNet-b6 | 5.78 | 5.98 | 165.40 | 19.43 |
Table 4
The evaluation results of the cow lameness classification model performance
| 折 | 准确率% | 精确度 | 召回率 | F 1分数 |
|---|---|---|---|---|
| 1 | 90.00 | 0.890 | 1.000 | 0.930 |
| 2 | 86.67 | 0.960 | 0.930 | 0.920 |
| 3 | 89.65 | 0.930 | 0.960 | 0.940 |
| 4 | 93.10 | 0.960 | 0.920 | 0.960 |
| 5 | 89.65 | 0.920 | 0.960 | 0.940 |
| 6 | 86.20 | 0.920 | 0.930 | 0.940 |
| 7 | 93.10 | 0.960 | 0.960 | 0.960 |
| 8 | 96.55 | 1.000 | 0.960 | 0.980 |
| 9 | 93.10 | 1.000 | 0.920 | 0.920 |
| 10 | 86.20 | 0.890 | 0.950 | 0.920 |
| Mean | 90.42 | 0.943 | 0.949 | 0.941 |
| 1 |
李前, 初梦苑, 康熙, 等. 基于计算机视觉的奶牛跛行识别技术研究进展[J]. 农业工程学报, 2022, 38(15): 159-169.
|
|
|
|
| 2 |
李蛟, 朱利峰. 奶牛蹄病的病因与诊治[J]. 北方牧业, 2024(8): 43.
|
|
|
|
| 3 |
代昕, 王军号, 张翼, 等. 基于时空流特征融合的俯视视角下奶牛跛行自动检测方法[J]. 智慧农业(中英文), 2024, 6(4): 18-28.
|
|
|
|
| 4 |
程家海, 权璞宏, 彭雪松, 等. 奶牛蹄病研究进展[J]. 兽医导刊, 2022(3): 45-47.
|
|
|
|
| 5 |
马军. 奶牛蹄病的病因分析及防治措施[J]. 中国动物保健, 2023, 25(4): 38-39.
|
|
|
|
| 6 |
杨昊天, 王爽, 张国华, 等. 奶牛蹄叶炎病因与防治[J]. 四川畜牧兽医, 2023, 50(6): 51-52.
|
|
|
|
| 7 |
景战蕾. 奶牛蹄疣的综合防控[J]. 中国乳业, 2023(9): 98-101, 107.
|
|
|
|
| 8 |
|
| 9 |
|
| 10 |
王政, 宋怀波, 王云飞, 等. 奶牛运动行为智能监测研究进展与技术趋势[J]. 智慧农业(中英文), 2022, 4 (2): 36-52.
|
|
|
|
| 11 |
|
| 12 |
阴旭强. 基于深度学习的奶牛基本运动行为识别方法研究[D]. 杨凌: 西北农林科技大学, 2021.
|
|
|
|
| 13 |
康熙, 李树东, 张旭东, 等. 基于热红外视频的奶牛跛行运动特征提取与检测[J]. 农业工程学报, 2021, 37(23): 169-178.
|
|
|
|
| 14 |
宋怀波, 姜波, 吴倩, 等. 基于头颈部轮廓拟合直线斜率特征的奶牛跛行检测方法[J]. 农业工程学报, 2018, 34(15): 190-199.
|
|
|
|
| 15 |
赵凯旋. 基于机器视觉的奶牛个体信息感知及行为分析[D]. 杨凌: 西北农林科技大学, 2017.
|
|
|
|
| 16 |
吴倩. 基于视频分析的奶牛关键部位提取及跛行检测研究[D]. 杨凌: 西北农林科技大学, 2019.
|
|
|
|
| 17 |
姜波. 基于计算机视觉与深度学习的奶牛跛行检测方法研究[D]. 杨凌: 西北农林科技大学, 2020.
|
|
|
|
| 18 |
|
| 19 |
|
| 20 |
|
| 21 |
|
| 22 |
|
| 23 |
|
| 24 |
WOO S,
|
| [1] | LI Ruijie, WANG Aidong, WU Huaxing, LI Ziqiu, FENG Xiangqian, HONG Weiyuan, TANG Xuejun, QIN Jinhua, WANG Danying, CHU Guang, ZHANG Yunbo, CHEN Song. Remote Sensing for Rice Growth Stages Monitoring: Research Progress, Bottleneck Problems and Technical Optimization Paths [J]. Smart Agriculture, 2025, 7(3): 89-107. |
| [2] | HAN Yu, QI Kangkang, ZHENG Jiye, LI Jinai, JIANG Fugui, ZHANG Xianglun, YOU Wei, ZHANG Xia. Lightweight Cattle Facial Recognition Method Based on Improved YOLOv11 [J]. Smart Agriculture, 2025, 7(3): 173-184. |
| [3] | MA Liu, MAO Kebiao, GUO Zhonghua. Defogging Remote Sensing Images Method Based on a Hybrid Attention-Based Generative Adversarial Network [J]. Smart Agriculture, 2025, 7(2): 172-182. |
| [4] | XU Shiwei, LI Qianchuan, LUAN Rupeng, ZHUANG Jiayu, LIU Jiajia, XIONG Lu. Agricultural Market Monitoring and Early Warning: An Integrated Forecasting Approach Based on Deep Learning [J]. Smart Agriculture, 2025, 7(1): 57-69. |
| [5] | GONG Yu, WANG Ling, ZHAO Rongqiang, YOU Haibo, ZHOU Mo, LIU Jie. Tomato Growth Height Prediction Method by Phenotypic Feature Extraction Using Multi-modal Data [J]. Smart Agriculture, 2025, 7(1): 97-110. |
| [6] | QI Zijun, NIU Dangdang, WU Huarui, ZHANG Lilin, WANG Lunfeng, ZHANG Hongming. Chinese Kiwifruit Text Named Entity Recognition Method Based on Dual-Dimensional Information and Pruning [J]. Smart Agriculture, 2025, 7(1): 44-56. |
| [7] | ZHANG Hui, HU Jun, SHI Hang, LIU Changxi, WU Miao. Precision Target Spraying System Integrated with Remote Deep Learning Recognition Model for Cabbage Plant Centers [J]. Smart Agriculture, 2024, 6(6): 85-95. |
| [8] | LU Bibo, LIANG Di, YANG Jie, SONG Aiqing, HUANGFU Shangwei. Image Segmentation Method of Chinese Yam Leaves in Complex Background Based on Improved ENet [J]. Smart Agriculture, 2024, 6(6): 109-120. |
| [9] | LUO Youlu, PAN Yonghao, XIA Shunxing, TAO Youzhi. Lightweight Apple Leaf Disease Detection Algorithm Based on Improved YOLOv8 [J]. Smart Agriculture, 2024, 6(5): 128-138. |
| [10] | LIU Yi, ZHANG Yanjun. ReluformerN: Lightweight High-Low Frequency Enhanced for Hyperspectral Agricultural Lancover Classification [J]. Smart Agriculture, 2024, 6(5): 74-87. |
| [11] | ZHANG Yanqi, ZHOU Shuo, ZHANG Ning, CHAI Xiujuan, SUN Tan. A Regional Farming Pig Counting System Based on Improved Instance Segmentation Algorithm [J]. Smart Agriculture, 2024, 6(4): 53-63. |
| [12] | WENG Zhi, FAN Qi, ZHENG Zhiqiang. Automatic Measurement Method of Beef Cattle Body Size Based on Multimodal Image Information and Improved Instance Segmentation Network [J]. Smart Agriculture, 2024, 6(4): 64-75. |
| [13] | HOU Yiting, RAO Yuan, SONG He, NIE Zhenjun, WANG Tan, HE Haoxu. A Rapid Detection Method for Wheat Seedling Leaf Number in Complex Field Scenarios Based on Improved YOLOv8 [J]. Smart Agriculture, 2024, 6(4): 128-137. |
| [14] | LI Hao, DU Yuqiu, XIAO Xingzhu, CHEN Yanxi. Remote Sensing Identification Method of Cultivated Land at Hill County of Sichuan Basin Based on Deep Learning [J]. Smart Agriculture, 2024, 6(3): 34-45. |
| [15] | NIE Ganggang, RAO Honghui, LI Zefeng, LIU Muhua. Severity Grading Model for Camellia Oleifera Anthracnose Infection Based on Improved YOLACT [J]. Smart Agriculture, 2024, 6(3): 138-147. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||