Welcome to Smart Agriculture

Content of Intelligent Equipment and Systems in our journal

        Published in last 1 year |  In last 2 years |  In last 3 years |  All
    Please wait a minute...
    For Selected: Toggle Thumbnails
    Design and Test of Portable Aflatoxin B1 Detection System
    WANG Pengfei, GAO Yuanyuan, LI Aixue
    Smart Agriculture    2023, 5 (1): 146-154.   DOI: 10.12133/j.smartag.SA202303004
    Abstract227)   HTML24)    PDF(pc) (1224KB)(309)       Save

    To achieve rapid on-site detection of aflatoxin B1 (AFB1) in agricultural and sideline products, a portable detection system based on differential pulse voltammetry (DPV) and STM32F103ZET6 as the core processor was designed. The system consists of two main parts: hardware detection devices and a mobile App, which are connected through Wi-Fi communication. The hardware detection equipment includes a DPV waveform generation circuit, constant potential circuit, and micro current detection module. The upper computer App was developed in an Android environment and completed tasks such as signal acquisition and data storage. After completing the design, experiments were conducted to verify the accuracy of the constant potential circuit and micro current detection module. The constant potential circuit accurately applied the voltage set by the program to the electrode, with a maximum error of 4 mV. The micro current detection module converts the current into a voltage signal according to the theoretical formula and amplifies it according to the theoretical amplification factor. The laboratory-made AFB1 sensor was used to effectively detect AFB1 in the range of 0.1 fg/ml to 100 pg/ml. The maximum relative error between the test results in the standard solution and the electrochemical workstation CHI760e was 7.37%. Furthermore, peanut oil samples with different concentrations of AFB1 were tested, and the results were compared to the CHI760e detection results as the standard, with a recovery rate of 96.8%~106.0%. Peanut samples with different degrees of mold were also tested and compared with CHI760e, with a maximum relative error of 7.10%.The system's portability allows it to be easily transported to different locations for on-site testing, making it an ideal solution for testing in remote or rural areas where laboratory facilities may be limited. Furthermore, the use of a mobile App for data acquisition and storage makes it easy to track and manage testing results. In summary, this portable detection system has great potential for widespread application in the rapid on-site detection of AFB1 in agricultural and sideline products.

    Table and Figures | Reference | Related Articles | Metrics | Comments0
    Real-Time Monitoring System for Rabbit House Environment Based on NB-IoT Network
    QIN Yingdong, JIA Wenshen
    Smart Agriculture    2023, 5 (1): 155-165.   DOI: 10.12133/j.smartag.SA202211008
    Abstract386)   HTML51)    PDF(pc) (1662KB)(831)       Save

    To meet the needs of environmental monitoring and regulation in rabbit houses, a real-time environmental monitoring system for rabbit houses was proposed based on narrow band Internet of Things (NB-IoT). The system overcomes the limitations of traditional wired networks, reduces network costs, circuit components, and expenses is low. An Arduino development board and the Quectel BC260Y-NB-IoT network module were used, along with the message queuing telemetry transport (MQTT) protocol for remote telemetry transmission, which enables network connectivity and communication with an IoT cloud platform. Multiple sensors, including SGP30, MQ137, and 5516 photoresistors, were integrated into the system to achieve real-time monitoring of various environmental parameters within the rabbit house, such as sound decibels, light intensity, humidity, temperature, and gas concentrations. The collected data was stored for further analysis and could be used to inform environmental regulation and monitoring in rabbit houses, both locally and in the cloud. Signal alerts based on circuit principles were triggered when thresholds were exceeded, creating an optimal living environment for the rabbits. The advantages of NB-IoT networks and other networks, such as Wi-Fi and LoRa were compared. The technology and process of building a system based on the three-layer architecture of the Internet of Things was introduced. The prices of circuit components were analyzed, and the total cost of the entire system was less than 400 RMB. The system underwent network and energy consumption tests, and the transmission stability, reliability, and energy consumption were reasonable and consistent across different time periods, locations, and network connection methods. An average of 0.57 transactions per second (TPS) was processed by the NB-IoT network using the MQTT communication protocol, and 34.2 messages per minute were sent and received with a fluctuation of 1 message. The monitored device was found to have an average voltage of approximately 12.5 V, a current of approximately 0.42 A, and an average power of 5.3 W after continuous monitoring using an electricity meter. No additional power consumption was observed during communication. The performance of various sensors was tested through a 24-hour indoor test, during which temperature and lighting conditions showed different variations corresponding to day and night cycles. The readings were stably and accurately captured by the environmental sensors, demonstrating their suitability for long-term monitoring purposes. This system is can provide equipment cost and network selection reference values for remote or large-scale livestock monitoring devices.

    Table and Figures | Reference | Related Articles | Metrics | Comments0