Smart Agriculture ›› 2022, Vol. 4 ›› Issue (2): 36-52.doi: 10.12133/j.smartag.SA202203011
王政1,2,3(), 宋怀波1,2,3(), 王云飞1,2,3, 华志新1,2,3, 李嵘1,2,3, 许兴时1,2,3
收稿日期:
2022-03-21
出版日期:
2022-06-30
基金项目:
作者简介:
王 政(1998-),男,硕士研究生,研究方向为智能化检测与技术。E-mail:wang_zheng@nwafu.edu.cn
通信作者:
宋怀波(1980-),男,博士,教授,研究方向为智能化检测与技术。E-mail:songhuaibo@nwafu.edu.cnWANG Zheng1,2,3(), SONG Huaibo1,2,3(), WANG Yunfei1,2,3, HUA Zhixin1,2,3, LI Rong1,2,3, XU Xingshi1,2,3
Received:
2022-03-21
Online:
2022-06-30
Foundation items:
National Key Research and Development Program of China (2017YFD0701603); Shaanxi Province Technology Innovation Guidance Program (2022QFY11-02)
About author:
WANG Zheng, E-mail:wang_zheng@nwafu.edu.cn
Corresponding author:
宋怀波, E-mail:songhuaibo@nwafu.edu.cn
摘要:
奶牛运动行为蕴含着诸多健康信息。信息化、智能化技术的应用有助于养殖场及时掌握奶牛健康状况,提高养殖效率。本文主要针对奶牛运动行为智能监测技术的研究进展予以分析,首先对奶牛基本运动(躺卧、行走、站立)、发情、呼吸、反刍及跛行等行为的监测意义进行阐述,明确了奶牛行为监测的必要性;其次按照时间顺序分别从接触式监测方法和非接触式监测方法两方面综述了国内外相关研究现状,对相关研究的原理及成果进行详细介绍,并进行了分类总结;对奶牛行为监测产业发展现状进行了分析,介绍了国外主流牧场自动化设备供应商主营业务及代表产品;之后分别提出了当前接触式和非接触式奶牛运动行为监测方法的问题与挑战。最后,针对相关关键技术的发展趋势进行了展望。
中图分类号:
王政, 宋怀波, 王云飞, 华志新, 李嵘, 许兴时. 奶牛运动行为智能监测研究进展与技术趋势[J]. 智慧农业(中英文), 2022, 4(2): 36-52.
WANG Zheng, SONG Huaibo, WANG Yunfei, HUA Zhixin, LI Rong, XU Xingshi. Research Progress and Technology Trend of Intelligent Morning of Dairy Cow Motion Behavior[J]. Smart Agriculture, 2022, 4(2): 36-52.
表1
接触式奶牛行为监测相关研究
传感器类型 | 特征类型 | 分类算法 | 监测行为类型 | 准确率 | 来源 | 年份 |
---|---|---|---|---|---|---|
加速度 | 颈部运动数据 | K-Means | 静止、慢走、快跑、爬跨 | —— | 尹令等[ | 2010 |
加速度,位置 | 蹄部运动数据, 位置坐标 | 多分类 BP-AdaBoost | 采食、躺卧、静止站立、躺下、起身、正常行走、主动行走 | 多数80%以上 | Wang等[ | 2018 |
加速度 | 颈部运动数据 | SVM① | 站立、躺卧、采食、行走 | 90.24% | Hoang等[ | 2018 |
加速度 | 侧腹运动数据 | 随机森林 | 采食、移动(行走或轻微移动)、反刍、休息 | 75.90% | Balasso等[ | 2021 |
加速度,位置 | 颈部运动数据, 位置坐标 | BP神经网络 | 发情 | 95.46% | Wang等[ | 2022 |
加速度 | 下颌运动数据 | KNN② | 采食和反刍 | 采食:92.80% 反刍:93.70% | Shen等[ | 2019 |
加速度 | 颈部运动数据 | —— | 放牧和反刍 | —— | Iqbal等[ | 2021 |
惯性测量单元 | 蹄部运动数据 | SVM | 跛行 | 91.10% | Haladjian等[ | 2017 |
计步器 | 活动量 | —— | 妊娠后期活动量 | —— | 蒋晓新等[ | 2014 |
计步器 | 活动量 | —— | 蹄病 | —— | 蒋晓新等[ | 2014 |
计步器 | 活动量 | SVM | 发情 | 98.90% | 谭益等[ | 2018 |
计步器 | 活动量 | KNN | 跛行 | 87.00% | Taneja等[ | 2020 |
压力 | 呼吸时腹部规律性起伏 | —— | 呼吸 | —— | Eigenberg等[ | 2000 |
压力 | 呼吸时鼻腔与周围环境的压力差 | —— | 呼吸 | 与人工计数具有较高相关性 | Strutzke等[ | 2018 |
压力 | 咀嚼时产生规律的压力变化 | —— | 反刍 | 与人工计数具有较高相关性 | Braun等[ | 2013 |
压力 | 咀嚼时产生规律的压力变化 | —— | 采食和反刍 | 与称重槽测定结果具有较高相关性 | Pahl等[ | 2016 |
压力 | 足底压力分布情况 | —— | 跛行 | —— | 杨丽娟等[ | 2016 |
电阻 | 阴道电阻值 | —— | 发情 | 精度为± 2.00% | 刘忠超和 何东健[ | 2019 |
振动,姿态,温度 | 活动量,静卧时间,体温 | 学习矢量量化 神经网络 | 发情 | 预测准确率70.00%以上 | 田富洋等[ | 2013 |
声音 | 声音识别出下颌运动 | 基于多层感知机的自下而上觅食活动识别器算法 | 采食和反刍 | F1分值均高于0.75 | Chelotti等[ | 2020 |
温度 | 奶牛鼻孔附近环境温度 | —— | 呼吸 | 与人工计数无统计学差异 | Milan等[ | 2016 |
表2
非接触式奶牛行为监测相关研究
方法 | 特征类型 | 分类算法 | 行为类型 | 准确率 | 文 献 | 年份 |
---|---|---|---|---|---|---|
传统视频图像分析 | 呼吸时腹部规律起伏 | 光流法 | 呼吸 | 95.68% | 赵凯旋等[ | 2014 |
爬跨过程包围两头牛的边界框长度 | —— | 爬跨 | 0.33%(假阳性率) | Tsai和Huang[ | 2014 | |
蹄肢运动曲线 | K-Means | 跛行 | 91.15% | Zhao和He[ | 2014 | |
牛的质心和轮廓 | 基于结构相似度的聚类算法 | 躺卧、站立、 行走、奔跑 | 97. 32% | 何东健等[ | 2016 | |
爬跨时两头奶牛最小包围盒之间的相交面积 | —— | 爬跨 | 80.00% | 顾静秋等[ | 2017 | |
反刍时嘴部区域质心轨迹 | 均值漂移 | 反刍 | 92.03% | Chen等[ | 2017 | |
步态特征 | 基于共轭梯度追踪算法的稀疏超完备词典学习方法 | 跛行 | 92.70% | 温长吉等[ | 2018 | |
反刍时嘴部区域质心轨迹 | 核相关滤波 | 反刍 | 误检率7.72%(双目标) | 宋怀波等[ | 2018 | |
头颈部轮廓拟合直线斜率 | KNN | 跛行 | 93.89% | 宋怀波等[ | 2018 | |
爬跨时几何和光流特征 | SVM | 爬跨 | 90.90% | Guo等[ | 2019 | |
呼吸时腹部规律起伏 | Lucas-Kanade稀疏光流法 | 呼吸 | 98.58% | 宋怀波等[ | 2019 | |
牛蹄跟随性 | 阈值判别 | 跛行 | 93.30% | 康熙等[ | 2019 | |
爬跨过程包围两头牛的最小外接矩形 | KNN | 爬跨 | 99.21% | 谢忠红等[ | 2021 | |
基于深度学习的视频图像分析 | —— | CNN① | 爬跨 | 98.25% | 刘忠超和 何东健[ | 2019 |
呼吸时腹部规律起伏 | 融合Deeplab V3+和Lucas-Kanade稀疏光流法 | 呼吸 | 93.04% | Wu等[ | 2020 | |
—— | 融合卷积神经网络和长短期记忆网络 | 躺卧、站立、行走、饮水、反刍 | 97.60% | Wu等[ | 2021 | |
—— | 改进YOLOv3 | 爬跨 | 99.15% | 王少华和 何东健[ | 2021 | |
—— | Rexnet 3D | 躺卧、站立、行走 | 95.00% | Ma等[ | 2022 | |
—— | 3D卷积网络和卷积长短期记忆网络 | 采食、寻觅、舔舐、行走、站立 | 90.32%(牛犊)86.67%(成年奶牛) | Qiao等[ | 2022 | |
背部曲率 | 噪声+双向长短期记忆网络 | 跛行 | 96.61% | Jiang等[ | 2022 | |
激光 | 呼吸时腹部规律起伏 | —— | 呼吸 | —— | Pastell等[ | 2007 |
声学 | 哞叫声 | 支持向量数据描述 | 发情 | 94.00% | Chung等[ | 2013 |
热成像 | 呼吸时由呼吸气流引起的鼻部区域像素强度值变化 | —— | 呼吸 | 较人工计数结果相关系数为0.87 | Jorquera-Chavez等[ | 2019 |
表3
部分国外牧场自动化设备供应商及产品
公司名称 | 国家 | 主营业务 | 部分产品 | 主要功能 | 网址 |
---|---|---|---|---|---|
阿菲金 (Afimilk) | 以色列 | 智能穿戴,数字奶厅,智能分群,管理软件 | 项圈计步器AfiCollar | 活动量统计,牛号识别,反刍时间,采食时间 | http://www.afimilk.com.cn/ |
脚环计步器AfiActll Tag | 活动量统计,牛号识别,躺卧数据统计,舒适度监控,产犊预警 | ||||
安乐福 (Allflex) | 美国 | 动物识别,智能监控,奶厅整机,智能数据 | eSense™Flex耳标 | 繁育监测,营养监测,健康监测,群组监控,牧场管理 | https://www.allflex.global/cn/our-legacy/ |
cSense™ Flex项圈 | |||||
利拉伐 (DeLaval) | 瑞典 | 挤奶解决方案,牧场管理系统,奶牛舒适产品,奶牛饲喂产品 | 自愿挤奶系统 VMS™ V300 | 自动挤奶,收集挤奶信息 | https://www.delaval.com/zh-cn/ |
自动搅拌推料机器人 OptiDuo™ | 饲料混合搅拌,移动推料 | ||||
莱力 (Lely) | 荷兰 | 挤奶方案,饲喂方案,牛舍管理,健康管理,大型牧场管理,数据管理分析 | Lely Calm犊牛饲喂器 | 自动喂料,自动调节饲料配量,自动清洁,远程监控 | https://www.lely.com/ |
Lely Juno 自动推料机 | 预定轨迹移动,自动送料 | ||||
COWLAR | 美国 | 可穿戴奶牛监测设备 | 智能项圈 | 健康监测,发情周期预测 | https://www.cowlar.com/ |
Connecterra | 荷兰 | 奶牛健康监测 | Ida智能项圈 | 牛群概况,行为分析,健康统计,生育信息 | https://www.connecterra.io/ |
博美特 (BouMatic) | 美国 | 精准健康管理,智能化挤奶方案,牛奶冷却系统,牧场卫生清洁系统等 | GEMINI MILKING ROBOTS挤奶机器人 | 并排挤奶,自动挤奶 | https://boumatic.com/eu_en/ |
OPTIFLO™ CF 电子奶泵速度控制器 | 牛奶冷却输送 | ||||
Farmnote | 日本 | 可穿戴奶牛监测设备 | Farmnote Color项圈 | 健康监测,异常预警,智能终端可视化管理 | https://farmnote.jp/en/ |
加拉格尔 (Gallagher) | 新西兰 | 电子围栏,智能称重,牧场管理软件 | eShepherd颈带 | GPS定位,终端设定虚拟围栏,牛只越界自动警示 | https://www.gallagher.com/ |
基伊埃 (GEA) | 德国 | 挤奶方案,牛奶冷却与存储,卫生清洁方案,饲喂系统,牛群管理系统 | CowScout 项圈/脚环 | 精准定位,发情监测,活动量监测采食及反刍时间监测 | https://www.gea.com/zh/dairy-farming/index.jsp |
1 | 中国奶业协会. 中国奶业改革开放30年[J]. 中国奶牛, 2009(1): 5-10. |
2 | 焦宏, 雷少斐. 2022年我国奶业成本与供需形势预测——保证生产者利益是中国奶业稳定的基石 [EB/OL]. (2021-12-30) [2022-02-15]. |
3 | 刘亚清, 王加启. 2021中国奶业质量报告[M]. 北京: 中国农业科学技术出版社, 2021. |
4 | 李彦军, 赵晓静, 翟文栋, 等. 看奶牛异常行为诊断牛病[J]. 中国奶牛, 2011(9): 38-40. |
LI Y, ZHAO X, ZHAI W, et al. Diagnosis of bovine disease by observing the abnormal behavior of dairy cows[J]. China Dairy Cattle, 2011(9): 38-40. | |
5 | 王晓鹏, 斯琴巴特, 吐日跟白乙拉. 奶牛躺卧行为的研究进展[J]. 当代畜禽养殖业, 2017(5): 3-5. |
6 | LUCY M C. Reproductive loss in high-producing dairy cattle: where will it end?[J]. Journal of Dairy Science, 2001, 84(6): 1277-1293. |
7 | POLSKY L, KEYSERLINGK M V. Invited review: Effects of heat stress on dairy cattle welfare[J]. Journal of Dairy Science, 2017, 100(11): 8645-8657. |
8 | 邵大富. 奶牛反刍行为变化规律及其影响因素的相关性研究[D]. 长春: 吉林大学, 2015. |
SHAO D. Researches on variation of the rumination and its influencing factors in lactating cows[D]. Changchun: Jilin University, 2015. | |
9 | 李小杉, 杨丰利. 奶牛肢蹄病对繁殖性能的影响[J]. 中国畜牧兽医, 2014, 41(5): 248-251. |
LI X, YANG F. Effect of lameness on reproductive performance in dairy cows[J]. China Animal Husbandry & Veterinary Medicine, 2014, 41(5): 248-251. | |
10 | 何东健, 刘冬, 赵凯旋. 精准畜牧业中动物信息智能感知与行为检测研究进展[J]. 农业机械学报, 2016, 47(5): 231-244. |
HE D, LIU D, ZHAO K. Review of perceiving animal information and behavior in precision livestock farming[J]. Transactions of the CSAM, 2016, 47(5): 231-244. | |
11 | 滕光辉. 畜禽设施精细养殖中信息感知与环境调控综述[J]. 智慧农业(中英文), 2019, 1(3): 1-12. |
TENG G. Information sensing and environment control of precision facility livestock and poultry farming[J]. Smart Agriculture, 2019, 1(3): 1-12. | |
12 | 尹令, 刘财兴, 洪添胜, 等. 基于无线传感器网络的奶牛行为特征监测系统设计[J]. 农业工程学报, 2010, 26(3): 203-208, 388. |
YIN L, LIU C, HONG T, et al. Design of system for monitoring dairy cattle's behavioral features based on wireless sensor networks[J]. Transactions of the CSAE, 2010, 26(3): 203-208, 388. | |
13 | WANG J, HE Z, ZHENG G, et al. Development and validation of an ensemble classifier for real-time recognition of cow behavior patterns from accelerometer data and location data[J]. PLoS ONE, 2018, 13(9): ID e0203546. |
14 | HOANG Q T, PHUNG C P K, BUI T N, et al. Cow behavior monitoring using a multidimensional acceleration sensor and multiclass SVM[J]. International Journal of Machine Learning and Networked Collaborative Engineering, 2018, 2(3): 110-118. |
15 | BALASSO P, MARCHESINI G, UGHELINI N, et al. Machine learning to detect posture and behavior in dairy cows: Information from an accelerometer on the animal's left flank[J]. Animals, 2021, 11(10): ID 2972. |
16 | WANG J, ZHANG Y, WANG J, et al. Using machine-learning technique for estrus onset detection in dairy cows from acceleration and location data acquired by a neck-tag[J]. Biosystems Engineering, 2022, 214: 193-206. |
17 | SHEN W, CHENG F, ZHANG Y, et al. Automatic recognition of ingestive-related behaviors of dairy cows based on triaxial acceleration[J]. Information Processing in Agriculture, 2019, 7(3): 427-443. |
18 | IQBAL M W, DRAGANOVA I, MOREL P C, et al. Validation of an accelerometer sensor-based collar for monitoring grazing and rumination behaviours in grazing dairy cows[J]. Animals, 2021, 11(9): ID 2724. |
19 | HALADJIAN J, HODAIE Z, NÜSKE S, et al. Gait anomaly detection in dairy cattle[C]// ACI 2017: Proceedings of the Fourth International Conference on Animal-Computer Interaction. New York, USA: Association for Computing Machinery, 2017: 1-8. |
20 | 蒋晓新, 邓双义, 刘炜, 等. 运用计步器对北方地区荷斯坦奶牛妊娠后期活动量进行控制的研究[J]. 黑龙江畜牧兽医, 2014(17): 102-104. |
JIANG X, DENG S, LIU W, et al. Study on controlling the activity of Holstein cows in the late pregnancy in northern China by pedometer[J]. Heilongjiang Animal Science and Veterinary Medicine, 2014(17): 102-104. | |
21 | 蒋晓新, 魏星远, 邓双义, 等. 计步器监测荷斯坦奶牛蹄病的效果[J]. 江苏农业科学, 2014, 42(2): 178-180. |
JIANG X, WEI X, DENG S, et al. Effect of pedometer monitoring hoof disease in Holstein cows[J]. Jiangsu Agricultural Sciences, 2014, 42(2): 178-180. | |
22 | 谭益, 何东健, 郭阳阳, 等. 基于Storm的奶牛发情实时监测系统设计与实现[J]. 中国农业科技导报, 2018, 20(12): 83-90. |
TAN Y, HE D, GUO Y, et al. Design and implementation of real-time monitoring system for cow estrus based on storm[J]. Journal of Agricultural Science and Technology, 2018, 20(12): 83-90. | |
23 | TANEJA M, BYABAZAIRE J, JALODIA N, et al. Machine learning based fog computing assisted data-driven approach for early lameness detection in dairy cattle[J]. Computers and Electronics in Agriculture, 2020, 171: ID 105286. |
24 | EIGENBERG R, HAHN G, NIENABER J, et al. Development of a new respiration rate monitor for cattle[J]. Transactions of the ASAE, 2000, 43(3): 723-728. |
25 | STRUTZKE S, FISKE D, HOFFMANN G, et al. Development of a noninvasive respiration rate sensor for cattle[J]. Journal of Dairy Science, 2018, 102(1): 690-695. |
26 | BRAUN U, TRÖSCH L, NYDEGGER F, et al. Evaluation of eating and rumination behaviour in cows using a noseband pressure sensor[J]. BMC Veterinary Research, 2013, 9(1): 1-8. |
27 | PAHL C, HARTUNG E, GROTHMANN A, et al. Suitability of feeding and chewing time for estimation of feed intake in dairy cows[J]. Animal, 2016, 10(9): 1507-1512. |
28 | 杨丽娟, 张永, 刘德环, 等. 基于压力分布测量系统的奶牛跛行早期识别[J]. 农业机械学报, 2016, 47(S1): 426-432. |
YANG L, ZHANG Y, LIU D, et al. Early recognition for dairy cow lameness based on pressure distribution measurement system[J]. Transactions of the CSAM, 2016, 47(S1): 426-432. | |
29 | 刘忠超, 何东健. 奶牛阴道植入式电阻传感器与无线监测系统研究[J]. 农业机械学报, 2019, 50(11): 175-185. |
LIU Z, HE D. Research of implantable sensor and wireless monitoring system for cow's vaginal resistance[J]. Transactions of the CSAM, 2019, 50(11): 175-185. | |
30 | 田富洋, 王冉冉, 刘莫尘, 等. 基于神经网络的奶牛发情行为辨识与预测研究[J]. 农业机械学报, 2013, 44(S1): 277-281. |
TIAN F, WANG R, LIU M, et al. Oestrus detection and prediction in dairy cows based on neural networks[J]. Transactions of the CSAM, 2013, 44(S1): 277-281. | |
31 | CHELOTTI J O, VANRELL S R, RAU L, et al. An online method for estimating grazing and rumination bouts using acoustic signals in grazing cattle[J]. Computers and Electronics in Agriculture, 2020, 173: ID 105443. |
32 | MILAN H, MAIA A, GEBREMEDHIN K G. Technical note: Device for measuring respiration rate of cattle under field conditions[J]. Journal of Animal Science, 2016, 94(12): 5434-5438. |
33 | 赵凯旋, 何东健, 王恩泽. 基于视频分析的奶牛呼吸频率与异常检测[J]. 农业机械学报, 2014, 45(10): 258-263. |
ZHAO K, HE D, WANG E. Detection of breathing rate and abnormity of dairy cattle based on video analysis[J]. Transactions of the CSAM, 2014, 45(10): 258-263. | |
34 | TSAI D M, HUANG C Y. A motion and image analysis method for automatic detection of estrus and mating behavior in cattle[J]. Computers and Electronics in Agriculture, 2014, 104: 25-31. |
35 | ZHAO K, HE D. Real-time automatic classification of lameness in dairy cattle based on movement analysis with image processing technique[C]// 2014 ASABE and CSBE/SCGAB Annual International Meeting. Montreal, Quebec Canada: ASABE, 2014. |
36 | 何东健, 孟凡昌, 赵凯旋, 等. 基于视频分析的犊牛基本行为识别[J]. 农业机械学报, 2016, 47(9): 294-300. |
HE D, MENG F, ZHAO K, et al. Recognition of calf basic behaviors based on video analysis[J]. Transactions of the CSAM, 2016, 47(9): 294-300. | |
37 | 顾静秋, 王志海, 高荣华, 等. 基于融合图像与运动量的奶牛行为识别方法[J]. 农业机械学报, 2017, 48(6): 145-151. |
GU J, WANG Z, GAO R, et al. Recognition method of cow behavior based on combination of image and activities[J]. Transactions of the CSAM, 2017, 48(6): 145-151. | |
38 | CHEN Y, HE D, FU Y, et al. Intelligent monitoring method of cow ruminant behavior based on video analysis technology[J]. International Journal of Agricultural and Biological Engineering, 2017, 10(5): 194-202. |
39 | 温长吉, 张金凤, 李卓识, 等. 改进稀疏超完备词典方法识别奶牛跛足行为[J]. 农业工程学报, 2018, 34(18): 219-227. |
WEN C, ZHANG J, LI Z, et al. Behavior recognition of lameness in dairy cattle by improved sparse overcomplete dictionary method[J]. Transactions of the CSAE, 2018, 34(18): 219-227. | |
40 | 宋怀波, 牛满堂, 姬存慧, 等. 基于视频分析的多目标奶牛反刍行为监测[J]. 农业工程学报, 2018, 34(18): 211-218. |
SONG H, NIU M, JI C, et al. Monitoring of multi-target cow ruminant behavior based on video analysis technology[J]. Transactions of the CSAE, 2018, 34(18): 211-218. | |
41 | 宋怀波, 姜波, 吴倩, 等. 基于头颈部轮廓拟合直线斜率特征的奶牛跛行检测方法[J]. 农业工程学报, 2018, 34(15): 190-199. |
SONG H, JIANG B, WU Q, et al. Detection of dairy cow lameness based on fitting line slope feature of head and neck outline[J]. Transactions of the CSAE, 2018, 34(15): 190-199. | |
42 | GUO Y, ZHANG Z, HE D, et al. Detection of cow mounting behavior using region geometry and optical flow characteristics[J]. Computers and Electronics in Agriculture, 2019, 163: ID 104828. |
43 | 宋怀波, 吴頔华, 阴旭强, 等. 基于Lucas-Kanade稀疏光流算法的奶牛呼吸行为检测[J]. 农业工程学报, 2019, 35(17): 215-224. |
SONG H, WU D, YIN X, et al. Respiratory behavior detection of cow based on Lucas-Kanade sparse optical flow algorithm[J]. Transactions of the CSAE, 2019, 35(17): 215-224. | |
44 | 康熙, 张旭东, 刘刚, 等. 基于机器视觉的跛行奶牛牛蹄定位方法[J]. 农业机械学报, 2019, 50(S1): 276-282. |
KANG X, ZHANG X, LIU G, et al. Hoof location method of lame dairy cows based on machine vision[J]. Transactions of the CSAM, 2019, 50(S1): 276-282. | |
45 | 谢忠红, 刘悦怡, 宋子阳, 等. 基于时序运动特征的奶牛爬跨行为识别研究[J]. 南京农业大学学报, 2021, 44(01): 194-200. |
XIE Z, LIU Y, SONG Z, et al. Research on recognition of crawling behavior of cows based on temporal motion features[J]. Journal of Nanjing Agricultural University, 2021, 44(01): 194-200. | |
46 | 刘忠超, 何东健. 基于卷积神经网络的奶牛发情行为识别方法[J]. 农业机械学报, 2019, 50(7): 186-193. |
LIU Z, HE D. Recognition method of cow estrus behavior based on convolutional neural network[J]. Transactions of the CSAM, 2019, 50(7): 186-193. | |
47 | WU D, YIN X, JIANG B, et al. Detection of the respiratory rate of standing cows by combining the Deeplab V3+ semantic segmentation model with the phase-based video magnification algorithm[J]. Biosystems Engineering, 2020, 192: 72-89. |
48 | WU D, WANG Y, HAN M, et al. Using a CNN-LSTM for basic behaviors detection of a single dairy cow in a complex environment[J]. Computers and Electronics in Agriculture, 2021, 182: ID 106016. |
49 | 王少华, 何东健. 基于改进YOLOv3模型的奶牛发情行为识别研究[J]. 农业机械学报, 2021, 52(7): 141-150. |
WANG S, HE D. Estrus behavior recognition of dairy cows based on improved YOLOv3 model[J]. Transactions of the CSAM, 2021, 52(7): 141-150. | |
50 | MA S, ZHANG Q, LI T, et al. Basic motion behavior recognition of single dairy cow based on improved Rexnet 3D network[J]. Computers and Electronics in Agriculture, 2022, 194: ID 106772. |
51 | QIAO Y, GUO Y, YU K, et al. C3D-ConvLSTM based cow behaviour classification using video data for precision livestock farming[J]. Computers and Electronics in Agriculture, 2022, 193: ID 106650. |
52 | JIANG B, SONG H, WANG H, et al. Dairy cow lameness detection using a back curvature feature[J]. Computers and Electronics in Agriculture, 2022, 194: ID 106729. |
53 | PASTELL M, KAIHILAHTI J, AISLA A M, et al. A system for contact-free measurement of respiration rate of dairy cows[C]// 3rd European conference on Precision Livestock Farming (ECPLF). Wageningen, The Netherlands: Wageningen Academic Publishers, 2007: 105-109. |
54 | CHUNG Y, LEE J, OH S, et al. Automatic detection of cow's oestrus in audio surveillance system[J]. Asian-Australasian Journal of Animal Sciences, 2013, 26(7): 1030-1037. |
55 | JORQUERA-CHAVEZ M, FUENTES S, DUNSHEA F R, et al. Modelling and validation of computer vision techniques to assess heart rate, eye temperature, ear-base temperature and respiration rate in cattle[J]. Animals, 2019, 9(12): ID 1089. |
56 | 曹斌斌, 郭栋, 刘李萍, 等. 奶牛躺卧行为简要分析[J]. 中国奶牛, 2020(9): 10-12. |
CAO B, GUO D, LIU L, et al. Brief analysis of lying down behavior of dairy cows[J]. China Dairy Cattle, 2020(9): 10-12. | |
57 | 阴旭强. 基于深度学习的奶牛基本运动行为识别方法研究[D]. 杨凌: 西北农林科技大学, 2021. |
YIN X. Basic motion behavior recognition of dairy cows based on deep learning[D]. Yangling: Northwest A&F University, 2021. | |
58 | 潘予琮, 王慧, 熊本海, 等. 发情监测系统在奶牛养殖数字化管理中的应用[J]. 动物营养学报, 2020, 32(6): 2500-2506. |
PAN Y, WANG H, XIONG B, et al. Application of estrus monitoring system in digital management of dairy cows[J]. Chinese Journal of Animal Nutrition, 2020, 32(6): 2500-2506. | |
59 | 刘忠超, 翟天嵩, 何东健. 精准养殖中奶牛个体信息监测研究现状及进展[J]. 黑龙江畜牧兽医, 2019(13): 30-33, 38. |
LIU Z, ZHAI T, HE D. Research status and progress of individual information monitoring of dairy cows in precision breeding[J]. Heilongjiang Animal Science and Veterinary Medicine. 2019(13): 30-33, 38. | |
60 | 沈明霞, 刘龙申, 闫丽, 等. 畜禽养殖个体信息监测技术研究进展[J]. 农业机械学报, 2014, 45(10): 245-251. |
SHEN M, LIU L, YAN L, et al. Review of monitoring technology for animal individual in animal husbandry[J]. Transactions of the CSAM, 2014, 45(10): 245-251. | |
61 | 王少华. 基于视频分析和深度学习的奶牛爬跨行为检测方法研究[D]. 杨凌: 西北农林科技大学, 2021. |
WANG S. Detection methods of cow mounting behavior based on video analysis and deep learning[D]. Yangling: Northwest A&F University, 2021. | |
62 | GODYŃ D, HERBUT P, ANGRECKA S. Measurements of peripheral and deep body temperature in cattle—A review[J]. Journal of Thermal Biology, 2019, 79: 42-49. |
63 | YEON S C, JEON J H, HOUPT K A, et al. Acoustic features of vocalizations of Korean native cows (Bos taurus coreanea) in two different conditions[J]. Applied Animal Behaviour Science, 2006, 101(1-2): 1-9. |
64 | MWAANGA E S, JANOWSKI T. Anoestrus in dairy cows: Causes, prevalence and clinical forms[J]. Reproduction in Domestic Animals, 2000, 35(5): 193-200. |
65 | 崔永国. 奶牛正常生理指标与检查方法[J]. 养殖技术顾问, 2013(5): 18. |
66 | RAMENDRA D, LALRENGPUII S, NISHANT V, et al. Impact of heat stress on health and performance of dairy animals: A review[J]. Veterinary World, 2016, 9(3): 260-268. |
67 | DE RENSIS F, GARCIA-ISPIERTO I, LÓPEZ-GATIUS F. Seasonal heat stress: Clinical implications and hormone treatments for the fertility of dairy cows[J]. Theriogenology, 2015, 84(5): 659-666. |
68 | 吴頔华. 基于视频分析的奶牛呼吸行为检测方法研究[D]. 杨凌: 西北农林科技大学, 2021. |
WU D. Detection of dairy cow's respiratory behavior based on video analysis[D]. Yangling: Northwest A&F University, 2021. | |
69 | 何孟宁. 奶牛数字化管理的关键技术研究[D]. 济南: 山东大学, 2015. |
HE M. The key technology of digital cow management[D]. Jinan: Shandong University, 2015. | |
70 | BERTONI G, TREVISI E, HAN X, et al. Effects of inflammatory conditions on liver activity in puerperium period and consequences for performance in dairy cows[J]. Journal of Dairy Science, 2008, 91(9): 3300-3310. |
71 | 鄢新义, 董刚辉, 徐伟, 等. 北京地区奶牛反刍与活动量影响因素分析[J]. 畜牧兽医学报, 2016, 47(5): 955-961. |
YAN X, DONG G, XU W, et al. Analysis of influence factors on cow's rumination and activity in Beijing[J]. Acta Veterinaria et Zootechnica Sinica, 2016, 47(5): 955-961. | |
72 | 王奎, 武佩, 宣传忠, 等. 放牧家畜牧食信息监测的研究进展[J]. 南京农业大学学报, 2020, 43(3): 403-413. |
WANG K, WU P, XUAN C, et al. Progress in monitoring the grazing information of livestock[J]. Journal of Nanjing Agricultural University, 2020, 43(3): 403-413. | |
73 | 宋怀波, 李通, 姜波, 等. 基于Horn-Schunck光流法的多目标反刍奶牛嘴部自动监测[J]. 农业工程学报, 2018, 34(10): 163-171. |
SONG H, LI T, JIANG B, et al. Automatic detection of multi-target ruminate cow mouths based on Horn-Schunck optical flow algorithm[J]. Transactions of the CSAE, 2018, 34(10): 163-171. | |
74 | BEZEN R, EDAN Y, HALACHMI I. Computer vision system for measuring individual cow feed intake using RGB-D camera and deep learning algorithms[J]. Computers and Electronics in Agriculture, 2020, 172: ID 105345. |
75 | HUXLEY J N. Impact of lameness and claw lesions in cows on health and production[J]. Livestock Science, 2013, 156(1-3): 64-70. |
76 | 韩书庆, 张晶, 程国栋, 等. 奶牛跛行自动识别技术研究现状与挑战[J]. 智慧农业(中英文), 2020, 2(3): 21-36. |
HAN S, ZHANG J, CHENG G, et al. Current state and challenges of automatic lameness detection in dairy cattle[J]. Smart Agriculture, 2020, 2(3): 21-36. | |
77 | 严作廷, 王东升, 张世栋, 等. 奶牛肢蹄病综合防治技术[J]. 兽医导刊, 2013(1): 35-37. |
YAN Z, WANG D, ZHANG S, et al. Integrated prevention and treatment technology of cow limb and foot disease[J]. Veterinary Orientation, 2013(1): 35-37. | |
78 | 阿菲金市场部. 智能脚环丨一篇文章带您读懂计步器的佩戴和维护[EB/OL]. (2022-03-31) [2022-04-15]. |
79 | ALSAAOD M, SCHAEFER A L, BÜSCHER W, et al. The role of infrared thermography as a non-invasive tool for the detection of lameness in cattle[J]. Sensors, 2015, 15(6): 14513-14525. |
80 | WOOD S, LIN Y, KNOWLES T, et al. Infrared thermometry for lesion monitoring in cattle lameness[J]. Veterinary Record, 2015, 176(12): ID 308. |
81 | 阿菲金市场部. 智能穿戴|阿菲金智能脚环计步器[EB/OL]. (2022-04-07) [2022.05.20]. |
82 | 何鹏. 农业黑科技, 让你更懂牲畜的心情[EB/OL]. (2018-06-04) [2022-05-20]. |
83 | 王雪涵, 陆少游. 放牛娃时代已然过去,让AI帮你养奶牛|智周报告核心版[EB/OL]. (2019-11-18) [2022.05.20]. |
84 | AQUILANI C, CONFESSORE A, BOZZI R, et al. Review: Precision livestock farming technologies in pasture-based livestock systems[J]. Animal, 2022, 16(1): ID 100429. |
85 | TVAN HERTEM, VIAZZI S, STEENSELS M, et al. Automatic lameness detection based on consecutive 3D-video recordings[J]. Biosystems Engineering, 2014, 119: 108-116. |
[1] | 年悦, 赵凯旋, 姬江涛. 基于改进DeepLabCut模型的奶牛滑蹄检测方法[J]. 智慧农业(中英文), 2024, 6(5): 153-163. |
[2] | 张宇, 李相廷, 孙雅琳, 薛爱迪, 张翼, 姜海龙, 沈维政. 基于边缘计算和改进MobileNet v3的奶牛反刍行为实时监测方法[J]. 智慧农业(中英文), 2024, 6(4): 29-41. |
[3] | 代昕, 王军号, 张翼, 王鑫杰, 李晏兴, 戴百生, 沈维政. 基于时空流特征融合的俯视视角下奶牛跛行自动检测方法[J]. 智慧农业(中英文), 2024, 6(4): 18-28. |
[4] | 郭阳阳, 杜书增, 乔永亮, 梁栋. 深度学习在家畜智慧养殖中研究应用进展[J]. 智慧农业(中英文), 2023, 5(1): 52-65. |
[5] | 康熙, 刘刚, 初梦苑, 李前, 王彦超. 基于计算机视觉的奶牛生理参数监测与疾病诊断研究进展及挑战[J]. 智慧农业(中英文), 2022, 4(2): 1-18. |
[6] | 张楷, 韩书庆, 程国栋, 吴赛赛, 刘继芳. 基于高斯混合-隐马尔科夫融合算法识别奶牛步态时相[J]. 智慧农业(中英文), 2022, 4(2): 53-63. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||