1 |
李前, 初梦苑, 康熙, 等. 基于计算机视觉的奶牛跛行识别技术研究进展[J]. 农业工程学报, 2022, 38(15): 159-169.
|
|
LI Q, CHU M Y, KANG X, et al. Research progress on lameness recognition technology in dairy cows using computer vision[J]. Transactions of the Chinese society of agricultural engineering, 2022, 38(15): 159-169.
|
2 |
李蛟, 朱利峰. 奶牛蹄病的病因与诊治[J]. 北方牧业, 2024(8): 43.
|
|
LI J, ZHU L F. Etiology, diagnosis and treatment of hoof disease in dairy cows[J]. Beifang muye, 2024(8): 43.
|
3 |
代昕, 王军号, 张翼, 等. 基于时空流特征融合的俯视视角下奶牛跛行自动检测方法[J]. 智慧农业(中英文), 2024, 6(4): 18-28.
|
|
DAI X, WANG J H, ZHANG Y, et al. Automatic detection method of dairy cow lameness from top-view based on the fusion of spatiotemporal stream features[J]. Smart agriculture, 2024, 6(4): 18-28.
|
4 |
程家海, 权璞宏, 彭雪松, 等. 奶牛蹄病研究进展[J]. 兽医导刊, 2022(3): 45-47.
|
|
CHENG J H, QUAN P H, PENG X S, et al. Research progress on hoof disease of dairy cow[J]. Veterinary orientation, 2022(3): 45-47.
|
5 |
马军. 奶牛蹄病的病因分析及防治措施[J]. 中国动物保健, 2023, 25(4): 38-39.
|
|
MA J. Etiological analysis and control measures of hoof disease in dairy cows[J]. China animal health, 2023, 25(4): 38-39.
|
6 |
杨昊天, 王爽, 张国华, 等. 奶牛蹄叶炎病因与防治[J]. 四川畜牧兽医, 2023, 50(6): 51-52.
|
|
YANG H T, WANG S, ZHANG G H, et al. Etiology and prevention of hoof inflammation in dairy cows[J]. Sichuan animal & veterinary sciences, 2023, 50(6): 51-52.
|
7 |
景战蕾. 奶牛蹄疣的综合防控[J]. 中国乳业, 2023(9): 98-101, 107.
|
|
JING Z L. Comprehensive prevention and control of hoof warts in dairy cows[J]. China dairy, 2023(9): 98-101, 107.
|
8 |
SCHLAGETER-TELLO A, BOKKERS E A M, GROOT KOERKAMP P W G, et al. Relation between observed locomotion traits and locomotion score in dairy cows[J]. Journal of dairy science, 2015, 98(12): 8623-8633.
|
9 |
SJÖSTRÖM K, FALL N, BLANCO-PENEDO I, et al. Lameness prevalence and risk factors in organic dairy herds in four European countries[J]. Livestock science, 2018, 208: 44-50.
|
10 |
王政, 宋怀波, 王云飞, 等. 奶牛运动行为智能监测研究进展与技术趋势[J]. 智慧农业(中英文), 2022, 4 (2): 36-52.
|
|
WANG Z, SONG H B, WANG Y F, et al. Research progress and technology trend of intelligent morning of dairy cow motion behavior[J]. Smart agriculture, 2022, 4(2): 36-52.
|
11 |
KANG X, ZHANG X D, LIU G. A review: Development of computer vision-based lameness detection for dairy cows and discussion of the practical applications[J]. Sensors, 2021, 21(3): 753.
|
12 |
阴旭强. 基于深度学习的奶牛基本运动行为识别方法研究[D]. 杨凌: 西北农林科技大学, 2021.
|
|
YIN X Q. Study on the recognition method of cow's basic sports behavior based on deep learning[D]. Yangling: Northwest A & F University, 2021.
|
13 |
康熙, 李树东, 张旭东, 等. 基于热红外视频的奶牛跛行运动特征提取与检测[J]. 农业工程学报, 2021, 37(23): 169-178.
|
|
KANG X, LI S D, ZHANG X D, et al. Features extraction and detection of cow lameness movement based on thermal infrared videos[J]. Transactions of the Chinese society of agricultural engineering, 2021, 37(23): 169-178.
|
14 |
宋怀波, 姜波, 吴倩, 等. 基于头颈部轮廓拟合直线斜率特征的奶牛跛行检测方法[J]. 农业工程学报, 2018, 34(15): 190-199.
|
|
SONG H B, JIANG B, WU Q, et al. Detection of dairy cow lameness based on fitting line slope feature of head and neck outline[J]. Transactions of the Chinese society of agricultural engineering, 2018, 34(15): 190-199.
|
15 |
赵凯旋. 基于机器视觉的奶牛个体信息感知及行为分析[D]. 杨凌: 西北农林科技大学, 2017.
|
|
ZHAO K X. Information perception and behavior analysis of dairy cows based on machine vision[D]. Yangling: Northwest A & F University, 2017.
|
16 |
吴倩. 基于视频分析的奶牛关键部位提取及跛行检测研究[D]. 杨凌: 西北农林科技大学, 2019.
|
|
WU Q. Research on key parts extraction and lameness detection of dairy cows based on video analysis[D]. Yangling: Northwest A & F University, 2019.
|
17 |
姜波. 基于计算机视觉与深度学习的奶牛跛行检测方法研究[D]. 杨凌: 西北农林科技大学, 2020.
|
|
JIANG B. Detection of dairy cow lameness based on computer vision and deep learning[D]. Yangling: Northwest A&F University, 2020.
|
18 |
INSAFUTDINOV E, PISHCHULIN L, ANDRES B, et al. DeeperCut: A deeper, stronger, and faster multi-person pose estimation model[EB/OL]. arXiv:1605.03170, 2016.
|
19 |
LAUER J, ZHOU M, YE S K, et al. Multi-animal pose estimation, identification and tracking with DeepLabCut[J]. Nature methods, 2022, 19(4): 496-504.
|
20 |
WU Z F, SHEN C H, VAN DEN HENGEL A. Wider or deeper: Revisiting the ResNet model for visual recognition[J]. Pattern recognition, 2019, 90: 119-133.
|
21 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2016: 770-778.
|
22 |
SANDLER M, HOWARD A, ZHU M L, et al. MobileNetV2: Inverted residuals and linear bottlenecks[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, New Jersey, USA: IEEE, 2018: 4510 - 4520.
|
23 |
TAN M, LE Q. EfficientNet: Rethinking model scaling for convolutional neural networks [C]// International Conference on Machine Learning. San Diego, California, USA: ICLM, 2019: 6105-6114.
|
24 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[M]// Lecture Notes in Computer Science. Cham: Springer International Publishing, 2018: 3-19.
|