Smart Agriculture ›› 2022, Vol. 4 ›› Issue (2): 19-35.doi: 10.12133/j.smartag.SA202204004
纪楠(), 尹艳玲, 沈维政(), 寇胜利, 戴百生, 王国维
收稿日期:
2022-04-24
出版日期:
2022-06-30
基金项目:
作者简介:
纪楠, E-mail: jn740740@163.com
通信作者:
沈维政, E-mail: wzshen@neau.edu.cn
JI Nan(), YIN Yanling, SHEN Weizheng(), KOU Shengli, DAI Baisheng, WANG Guowei
Received:
2022-04-24
Online:
2022-06-30
Foundation items:
The National Natural Science Foundation of China(32172784);The National Key Research and Development Program of China(2019YFE0125600);China Agriculture Research System of MOF and MARA(CARS-36);The University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(UNPYSCT-2020092);the Academic Backbone Project of Northeast Agricultural University
About author:
Biographies: JI Nan (1991-), female, PhD candidate, research interest: smart livestock. E-mail: jn740740@163.com
Corresponding author:
SHEN Weizheng (1977-), male, PhD, professor, research interest: smart livestock. E-mail: wzshen@neau.edu.cn摘要:
叫声是评估生猪福利水平的重要方式之一。本文首先分析了生猪叫声与福利之间的相互关系。其中,与生猪福利密切相关的三种生猪叫声包括咳嗽声、尖叫声和呼噜声。基于这三种声音进一步分析声音与环境,声音与身体状况,以及声音与健康之间的关系。随后,对当下的生猪福利监测所采用的传感器,包括穿戴式与非接触式两大类进行分析,并简述不同方式的优劣势。基于非接触式的优势及麦克风传感器技术的可行性,从声音的获取和标记、特征提取以及声音分类三个方面对现有的生猪声音处理技术进行了阐述和评估。最后,从声音监测技术、生猪个体福利监测、商业应用以及养猪从业者四个角度讨论了叫声在生猪福利监测中面临的研究困境以及发展趋势。研究发现,目前关于生猪声音分析的研究大多集中在分类器的选择和识别算法的改进上,而对端点检测和特征选择的研究较少。同时,当下面临的主要挑战还包括不同生长阶段的音频数据获取难度较高,缺乏公共的猪舍内音频数据库以及缺少完善的声音指标与动物福利监测评价体系。总体来说,建议进一步对声音识别过程中涉及的各部分技术进行深入探索,同时加强跨学科专家之间的合作,共同推动声音监测在生猪实际生产中的应用,从而加快精准畜牧业的实现。
中图分类号:
纪楠, 尹艳玲, 沈维政, 寇胜利, 戴百生, 王国维. 叫声在生猪福利监测中的研究进展与挑战[J]. 智慧农业(中英文), 2022, 4(2): 19-35.
JI Nan, YIN Yanling, SHEN Weizheng, KOU Shengli, DAI Baisheng, WANG Guowei. Pig Sound Analysis: A Measure of Welfare[J]. Smart Agriculture, 2022, 4(2): 19-35.
Sounds | Indicators | Welfare | Production phase | Year |
---|---|---|---|---|
Coughs[ | Air quality | Environment | Weaners | 2019 |
Coughs[ | Air quality | Environment | Weaners | 2004 |
Coughs, sneezes[ | Air quality | Environment | Fattening | 2022 |
Coughs[ | Respiratory disease | Health | Fattening | 2001 |
Coughs[ | Respiratory disease | Health | Fattening | 2008 |
Coughs[ | Respiratory disease | Health | Fattening | 2008 |
Coughs[ | Respiratory disease | Health | Fattening | 2008 |
Coughs[ | Respiratory disease | Health | Fattening | 2008 |
Coughs[ | Respiratory disease | Health | Fattening | 2008 |
Coughs[ | Respiratory disease | Health | Fattening | 2008 |
Coughs[ | Wasting disease | Health | Fattening | 2010 |
Coughs[ | Respiratory disease | Health | Fattening | 2013 |
Coughs[ | Wasting disease | Health | Weaners | 2013 |
Coughs[ | Wasting disease | Health | Weaners | 2016 |
Coughs[ | Respiratory disease | Health | / | 2020 |
Coughs[ | Wasting disease | Health | / | 2020 |
Coughs[ | Respiratory disease | Health | Fattening | 2021 |
Coughs[ | Respiratory disease | Health | Fattening | 2021 |
Coughs, screams[ | Respiratory disease | Health | Farrowing | 2016 |
Coughs, screams[ | Respiratory disease | Health | Farrowing | 2020 |
Coughs[ | Respiratory disease | Health | / | 2017 |
Coughs[ | Respiratory disease | Health | / | 2019 |
Coughs[ | Respiratory disease | Health | / | 2020 |
Coughs[ | Respiratory disease | Health | / | 2020 |
Coughs[ | Respiratory disease | Health | Fattening | 2019 |
Coughs[ | Respiratory disease | Health | Fattening | 2019 |
Screams[ | Stress | Health | Piglets | 2009 |
Screams[ | Stress | Physical condition | Piglets | 2008 |
Screams[ | Stress | Physical condition | Piglets | 2009 |
Screams[ | Stress | Physical condition | / | 2012 |
Screams, grunts[ | Stress | Environment | Piglets | 2013 |
Screams[ | Stress | Environment | Piglets | 2020 |
Screams[ | Stress | Physical condition | / | 2014 |
Screams, grunts[ | Stress | Physical condition | Piglets | 2003 |
Screams[ | Stress | Physical condition | Fattening | 2015 |
Screams[ | Distress | Physical condition | Farrowing, nursery, growing, and finishing | 2018 |
Screams[ | Distress | Physical condition | Piglets | 2016 |
Screams[ | Stress | Physical condition | Piglets | 2018 |
Grunts, screams, howls[ | Distress | Physical condition | Farrowing | 2020 |
Coughs, screams, howls[ | Distress | Physical condition | / | 2017 |
1 | Development situation of pig industry in 2021 and prospect in 2022[J]. China Animal Industry, 2022(3): 39-40. |
2 | GAO G. Development prospect of China's meat industry in 2022[J]. Meat Industry, 2022(2): 1-5. |
3 | NORTON T, CHEN C, LARSEN M L V, et al. Review: Precision livestock farming: Building 'digital representations' to bring the animals closer to the farmer[J]. Animal, 2019, 13(12): 3009-3017. |
4 | GÓMEZ Y, STYGAR A H, BOUMANS I J M, et al. A systematic review on validated precision livestock farming technologies for pig production and its potential to assess animal welfare[J]. Frontiers in Veterinary Science, 2021, 8: ID 660565. |
5 | INGVARTSEN K L, NutritionMOYES K. Immune function and health of dairy cattle[J]. Animal, 2013, 7: 112-122. |
6 | DAWKINS M S. Animal welfare and efficient farming: Is conflict inevitable?[J]. Animal Production Science, 2017, 57(2): 201-208. |
7 | MAHFUZ S, MUN H S, DILAWAR M A, et al. Applications of smart technology as a sustainable strategy in modern swine farming[J]. Sustainability, 2022, 14(5): ID 2607. |
8 | TZANIDAKIS C, SIMITZIS P, ARVANITIS K, et al. An overview of the current trends in precision pig farming technologies[J]. Livestock Science, 2021, 249: ID 104530. |
9 | SCHILLINGS J, BENNETT R, ROSE D C. Exploring the potential of precision livestock farming technologies to help address farm animal welfare[J]. Frontiers in Animal Science, 2021, 2: ID 639678. |
10 | RACEWICZ P, LUDWICZAK A, SKRZYPCZAK E, et al. Welfare health and productivity in commercial pig herds[J]. Animals, 2021, 11(4): ID 1176. |
11 | MANTEUFFEL G, PUPPE B, SCHÖN P C. Vocalization of farm animals as a measure of welfare[J]. Applied Animal Behaviour Science, 2004, 88(1-2): 163-182. |
12 | MCLOUGHLIN M P, STEWART R, MCELLIGOTT A G. Automated bioacoustics: Methods in ecology and conservation and their potential for animal welfare monitoring[J]. Journal of The Royal Society Interface, 2019, 16(155): ID 20190225. |
13 | FERRARI S, COSTA A, GUARINO M. Heat stress assessment by swine related vocalizations[J]. Livestock Science, 2013, 151(1): 29-34. |
14 | AMARAL P I S, CAMPOS A T, YANAGI JUNIOR T, et al. Using sounds produced by pigs to identify thermoneutrality zones for thermal environment assessment ratios[J]. Engenharia Agrícola, 2020, 40(3): 266-271. |
15 | AVAN HIRTUM, BERCKMANS D. Objective recognition of cough sound as biomarker for aerial pollutants: Aerial pollutants and cough sound[J]. Indoor Air, 2004, 14(1): 10-15. |
16 | WANG X, ZHAO X, HE Y, et al. Cough sound analysis to assess air quality in commercial weaner barns[J]. Computers and Electronics in Agriculture, 2019, 160: 8-13. |
17 | PESSOA J, CAMP MONTORO J, PINA NUNES T, et al. Environmental risk factors influence the frequency of coughing and sneezing episodes in finisher pigs on a farm free of respiratory disease[J]. Animals, 2022, 12(8): ID 982. |
18 | MOI M, NÄÄS I DE A, CALDARA F R, et al. Vocalization data mining for estimating swine stress conditions[J]. Engenharia Agrícola, 2014, 34(3): 445-450. |
19 | CANG Y, LUO S, QIAO Y. Classification of pig sounds based on deep neural network[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(9): 195-204. |
20 | ZHANG Z. Pig anomaly detection based on audio analysis technology[D]. Taiyuan: Taiyuan University of Technology, 2017. |
21 | LEIDIG M S, HERTRAMPF B, FAILING K, et al. Pain and discomfort in male piglets during surgical castration with and without local anaesthesia as determined by vocalisation and defence behaviour[J]. Applied Animal Behaviour Science, 2009, 116(2-4): 174-178. |
22 | CORDEIRO A F DA S, NÄÄS I DE A, OLIVEIRA S R DE M, et al. Efficiency of distinct data mining algorithms for classifying stress level in piglets from their vocalization[J]. Engenharia Agrícola, 2012, 32(2): 208-216. |
23 | MARX G, HORN T, THIELEBEIN J, et al. Analysis of pain-related vocalization in young pigs[J]. Journal of Sound and Vibration, 2003, 266(3): 687-698. |
24 | CORDEIRO A F DA S, NÄÄS I DE A, BARACHO M DOS S, et al. The use of vocalization signals to estimate the level of pain in piglets[J]. Engenharia Agrícola, 2018, 38(4): 486-490. |
25 | VANDERMEULEN J, BAHR C, TULLO E, et al. Discerning pig screams in production environments[J]. PLoS One, 2015, 10(4): ID e0123111. |
26 | RILEY J L, RILEY W D, CARROLL L M. Frequency characteristics in animal species typically used in laryngeal research: An exploratory investigation[J]. Journal of Voice, 2016, 30(6): e17-e24. |
27 | MOURA D J, SILVA W T, NAAS I A, et al. Real time computer stress monitoring of piglets using vocalization analysis[J]. Computers and Electronics in Agriculture, 2008, 64(1): 11-18. |
28 | MOSHOU D, CHEDAD A, AVAN HIRTUM, et al. Neural recognition system for swine cough[J]. Mathematics and Computers in Simulation, 2001, 56(4-5): 475-487. |
29 | FERRARI S, SILVA M, GUARINO M, et al. Analysis of cough sounds for diagnosis of respiratory infections in intensive pig farming[J]. Transactions of the ASABE, 2008, 51(3): 1051-1055. |
30 | SILVA M, FERRARI S, COSTA A, et al. Cough localization for the detection of respiratory diseases in pig houses[J]. Computers and Electronics in Agriculture, 2008, 64(2): 286-292. |
31 | FERRARI S, SILVA M, GUARINO M, et al. Cough sound analysis to identify respiratory infection in pigs[J]. Computers and Electronics in Agriculture, 2008, 64(2): 318-325. |
32 | EXADAKTYLOS V, SILVA M, FERRARI S, et al. Time-series analysis for online recognition and localization of sick pig (Sus scrofa) cough sounds[J]. The Journal of the Acoustical Society of America, 2008, 124(6): 3803-3809. |
33 | EXADAKTYLOS V, SILVA M, AERTS J M, et al. Real-time recognition of sick pig cough sounds[J]. Computers and Electronics in Agriculture, 2008, 63(2): 207-214. |
34 | GUARINO M, JANS P, COSTA A, et al. Field test of algorithm for automatic cough detection in pig houses[J]. Computers and Electronics in Agriculture, 2008, 62(1): 22-28. |
35 | GUTIERREZ W M, KIM S, KIM D H, et al. Classification of porcine wasting diseases using sound analysis[J]. Asian-Australasian Journal of Animal Sciences, 2010, 23(8): 1096-1104. |
36 | FERRARI S, SILVA M, EXADAKTYLOS V, et al. The sound makes the difference: The utility of real time sound analysis for health monitoring in pigs[M]// ALAND A, BANHAZI T. Livestock housing. The Netherlands: Wageningen Academic Publishers, 2013: 407-418. |
37 | CHUNG Y, OH S, LEE J, et al. Automatic detection and recognition of pig wasting diseases using sound data in audio surveillance systems[J]. Sensors, 2013, 13(10): 12929-12942. |
38 | KIM H. Automatic identification of a coughing animal using audio and video data[C]// The fourth International Conference on Information Science and Cloud Computing — PoS(ISCC2015). Guangzhou, China: Sissa Medialab, 2016. |
39 | ZHAO J, LI X, LIU W, et al. DNN-HMM based acoustic model for continuous pig cough sound recognition[J]. International Journal of Agricultural and Biological Engineering, 2020, 13(3): 186-193. |
40 | HONG M, AHN H, ATIF O, et al. Field-applicable pig anomaly detection system using vocalization for embedded board implementations[J]. Applied Sciences, 2020, 10(19): ID 6991. |
41 | YIN Y, TU D, SHEN W, et al. Recognition of sick pig cough sounds based on convolutional neural network in field situations[J]. Information Processing in Agriculture, 2021, 8(3): 369-379. |
42 | SHEN W, TU D, YIN Y, et al. A new fusion feature based on convolutional neural network for pig cough recognition in field situations[J]. Information Processing in Agriculture, 2021, 8(4): 573-580. |
43 | XU, Y, SHEN M, YAN L, et al. Research of predelivery Meishan sow cough recognition algorithm[J]. Journal of Nanjing Agricultural University, 2016, 39(4): 681-687. |
44 | ZHANG H. Design and implementation of Meishan pig continuous cough sound monitoring system[D]. Nanjing: Nanjing Agricultural University, 2020. |
45 | ZHANG Z, TIAN J, WANG F, et al. The study on characteristic parameters extraction and recognition of pig cough sound[J]. Heilongjiang Animal Science and Veterinary Medicine, 2017(23): 18-22. |
46 | HAN L, TIAN J, ZHANG S, et al. Porcine abnormal sounds recognition using decision-tree-based support vector machine and fuzzy inference[J]. Animal Husbandry & Veterinary Medicine, 2019, 51(3): 38-44. |
47 | LI J, TIAN Y, ZHANG S. Research on recognition and localization of porcine cough sounds[J]. Heilongjiang Animal Science and Veterinary Medicine, 2020(14): 36-41. |
48 | ZHANG S. Research and application on multi-source monitoring and information fusion method for porcine abnormal behaviors[D]. Taiyuan: Taiyuan University of Technology, 2020. |
49 | ZHAO J. Pig cough sounds recognition based on deep learning[D]. Wuhan: Huazhong Agricultural University, 2019. |
50 | LI X, ZHAO J, GAO Y, et al. Pig continuous cough sound recognition based on continuous speech recognition technology[J]. Transactions of the CSAE, 2019, 35(6): 174-180. |
51 | RISI N, KÉSIA OLIVEIRA SILVA, PAULO R F Z, et al. Use of artificial intelligence to identify vocalizations emitted by sick and healthy piglets[C]// Livestock Environment VIII. St. Joseph, Michigan, USA: American Society of Agricultural and Biological Engineers, 2009. |
52 | CORDEIRO A F DA S, NÄÄS I DE A, SILVA LEITÃO FDA, et al. Use of vocalisation to identify sex, age, and distress in pig production[J]. Biosystems Engineering, 2018, 173: 57-63. |
53 | HALACHMI I, GUARINO M, BEWLEY J, et al. Smart animal agriculture: Application of real-time sensors to improve animal well-being and production[J]. Annual Review of Animal Biosciences, 2019, 7(1): 403-425. |
54 | BENJAMIN M, YIK S. Precision livestock farming in swine welfare: A review for swine practitioners[J]. Animals, 2019, 9(4): ID 133. |
55 | BERCKMANS D. General introduction to precision livestock farming[J]. Animal Frontiers, 2017, 7(1): 6-11. |
56 | POLITIS A, MESAROS A, ADAVANNE S, et al. Overview and evaluation of sound event localization and detection in DCASE 2019[J]. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 2021, 29: 684-698. |
57 | CHANDRAKALA S, JAYALAKSHMI S L. Environmental audio scene and sound event recognition for autonomous surveillance: A survey and comparative studies[J]. ACM Computing Surveys, 2020, 52(3): 1-34. |
58 | ZEBARI R, ABDULAZEEZ A, ZEEBAREE D, et al. A comprehensive review of dimensionality reduction techniques for feature selection and feature extraction[J]. Journal of Applied Science and Technology Trends, 2020, 1(2): 56-70. |
59 | GARRETA R, MONCECCHI G. Learning scikit-learn: machine learning in python: Experience the benefits of machine learning techniques by applying them to real-world problems using python and the open source scikit-learn library[M]. Birmingham, UK: Packt Publishing Ltd, 2013. |
60 | SHARMA G, UMAPATHY K, KRISHNAN S. Trends in audio signal feature extraction methods[J]. Applied Acoustics, 2020, 158: ID 107020. |
61 | SILVA CORDEIRO ADA, DE ALENCAR NÄÄS I, OLIVEIRA S, et al. Understanding vocalization might help to assess stressful conditions in piglets[J]. Animals, 2013, 3(3): 923-934. |
62 | DIANA A, CARPENTIER L, PIETTE D, et al. An ethogram of biter and bitten pigs during an ear biting event: First step in the development of a Precision Livestock Farming tool[J]. Applied Animal Behaviour Science, 2019, 215: 26-36. |
63 | ZHANG S, TIAN J, BANERJEE A, et al. Automatic recognition of porcine abnormalities based on a sound detection and recognition system[J]. Transactions of the ASABE, 2019, 62(6): 1755-1765. |
64 | DAVIS S, MERMELSTEIN P. Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences[J]. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1980, 28(4): 357-366. |
65 | GIESERT A L, BALKE W T, JAHNS G. Probabilistic analysis of coughs in pigs to diagnose respiratory infections[J]. Landbauforschung vTI Agriculture and Forestry Research, 2011, 3(61): 237-242. |
66 | GENG Y, SONG P, LIN Y, et al. Voice recognition of abnormal state of pigs based on improved CNN[J]. Transactions of the CSAE, 2021, 37(20): 187-193. |
67 | LEE J, CHOI Y, PARK D, et al. Sound noise-robust porcine wasting diseases detection and classification system using convolutional neural network[J]. The Journal of Korean Institute of Information Technology, 2018, 16(5): 1-13. |
68 | THAKUR A, THAPAR D, RAJAN P, et al. Deep metric learning for bioacoustic classification: Overcoming training data scarcity using dynamic triplet loss[J]. The Journal of the Acoustical Society of America, 2019, 146(1): 534-547. |
69 | XIE J, HU K, ZHU M, et al. Investigation of different CNN-based models for improved bird sound classification[J]. IEEE Access, 2019, 7: 175353-175361. |
70 | FUZ, LUG, TINGK M, et al. A survey of audio-based music classification and annotation[J]. IEEE Transactions on Multimedia, 2011, 13(2): 303-319. |
71 | HUANG C J, CHEN Y J, CHEN H M, et al. Intelligent feature extraction and classification of anuran vocalizations[J]. Applied Soft Computing, 2014, 19: 1-7. |
72 | XIE J, HU K, ZHU M, et al. Bioacoustic signal classification in continuous recordings: Syllable-segmentation vs sliding-window[J]. Expert Systems with Applications, 2020, 152: ID 113390. |
73 | NGO D, HOANG H, NGUYEN A, et al. Sound context classification basing on join learning model and multi-Spectrogram features[J/OL]. arXiv:2005.12779 [cs, eess], 2020. |
74 | HUZAIFAH M. Comparison of time-frequency representations for environmental sound classification using convolutional neural networks[J/OL]. arXiv:1706.07156 [cs], 2017. |
75 | NGUYEN T, NGO D, PHAM L, et al. A re-trained model based on multi-kernel convolutional neural network for acoustic scene classification[C]// 2020 RIVF International Conference on Computing and Communication Technologies (RIVF). Piscataway, New York, USA: IEEE, 2020: 1-5. |
76 | DOUGLAS C E, MICHAEL F A. On distribution-free multiple comparisons in the one-way analysis of variance[J]. Communications in Statistics-Theory and Methods, 1991, 20(1): 127-139. |
77 | FERRARI S, SILVA M, SALA V, et al. Bioacoustics: A tool for diagnosis of respiratory pathologies in pig farms[J]. Journal of Agricultural Engineering, 2009, 40(1): ID 7. |
78 | SANCHEZ-VAZQUEZ M J, NIELEN M, EDWARDS S A, et al. Identifying associations between pig pathologies using a multi-dimensional machine learning methodology[J]. BMC Veterinary Research, 2012, 8(1): ID 151. |
79 | PAL N R, PAL K, KELLER J M, et al. A possibilistic fuzzy c-means clustering algorithm[J]. IEEE Transactions on Fuzzy Systems, 2005, 13(4): 517-530. |
80 | RTAYLI N, ENNEYA N. Enhanced credit card fraud detection based on SVM-recursive feature elimination and hyper-parameters optimization[J]. Journal of Information Security and Applications, 2020, 55: ID 102596. |
81 | LEE J, JIN L, PARK D, et al. Acoustic features for pig wasting disease detection[J]. International Journal of Intellectual Property Management, 2015, 6(1): 37-46. |
82 | HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New York, USA: IEEE, 2016: 770-778. |
83 | LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324. |
84 | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J/OL]. arXiv:1409.1556 [cs], 2015. |
85 | XIONG Z. Design of pig cough monitoring system in fattening pig houses[D]. Harbin: Harbin Engineering University, 2021. |
86 | HÄRDLE W K, SIMAR L. Applied multivariate statistical analysis[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. |
87 | VALLETTA J J, TORNEY C, KINGS M, et al. Applications of machine learning in animal behaviour studies[J]. Animal Behaviour, 2017, 124: 203-220. |
88 | EXADAKTYLOS V, SILVA M, FERRARI S, et al. Sound localisation in practice: An application in localisation of sick animals in commercial piggeries[M]// STRUMILLO P. Advances in sound localization. Shenzhen: InTech, 2011. |
89 | WANG R. How do pig practitioners consider artificial intelligence in pig farming?[J]. Swine Industry Science, 2019, 36(4): 46-48. |
90 | SILVAA P S P, STORINOG Y, FERREYRAF S M, et al. Cough associated with the detection of Mycoplasma hyopneumoniae DNA in clinical and environmental specimens under controlled conditions[J]. Porcine Health Management, 2022, 8(1): ID 6. |
91 | PESSOA J, RODRIGUES DA COSTA M, GARCÍA MANZANILLA E, et al. Managing respiratory disease in finisher pigs: Combining quantitative assessments of clinical signs and the prevalence of lung lesions at slaughter[J]. Preventive Veterinary Medicine, 2021, 186: ID 105208. |
92 | SCHÖN P, PUPPE B, MANTEUFFEL G. Automated recording of stress vocalisations as a tool to document impaired welfare in pigs[J]. Animal Welfare, 2004, 13: 105-110. |
93 | SUN J. Technology changes pig farming[J]. China Rural Science & Technology, 2020(1): 36-39. |
[1] | 叶大鹏, 景均, 张之得, 李辉煌, 吴昊宇, 谢立敏. MSH-YOLOv8:融合尺度重建的蘑菇小目标检测方法[J]. 智慧农业(中英文), 2024, 6(5): 139-152. |
[2] | 韩书庆, 张晶, 程国栋, 彭英琦, 张建华, 吴建寨. 奶牛跛行自动识别技术研究现状与挑战[J]. 智慧农业(中英文), 2020, 2(3): 21-36. |
[3] | 付元元, 杨贵军, 段丹丹, 张永涛, 顾晓鹤, 杨小冬, 徐新刚, 李振海. AVIRIS高光谱数据空-谱特征在植被分类中的对比分析[J]. 智慧农业(中英文), 2020, 2(1): 68-76. |
[4] | 李淼, 王敬贤, 李华龙, 胡泽林, 杨选将, 黄小平, 曾伟辉, 张建, 房思思. 基于CNN和迁移学习的农作物病害识别方法研究[J]. 智慧农业(中英文), 2019, 1(3): 46-55. |
[5] | 赵一广, 杨亮, 郑姗姗, 熊本海. 家畜智能养殖设备和饲喂技术应用研究现状与发展趋势[J]. 智慧农业(中英文), 2019, 1(1): 20-31. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||