1 |
张宗毅. “十四五”期间丘陵山区农田宜机化改造若干重大问题与举措[J]. 中国农村经济, 2020(11): 13-28.
|
|
ZHANG Z Y. Some important problems and measures of farmland construction suitable for mechanization in hilly and mountainous areas during the 14th five-year plan period[J]. Chinese rural economy, 2020(11): 13-28.
|
2 |
徐峰, 朱慧琴, 程胜男, 等. 大田无人农业发展现状与实现路径[J]. 农业工程, 2021, 11(3): 11-14.
|
|
XU F, ZHU H Q, CHENG S N, et al. Development status and realization path of unmanned agriculture in field[J]. Agricultural engineering, 2021, 11(3): 11-14.
|
3 |
张雁. 水田环境下的无人农机自动驾驶与作业系统研究[D]. 上海: 上海交通大学, 2019.
|
|
ZHANG Y. Research on automatic driving and working control system of unmanned agricultural machinery in paddy field[D]. Shanghai: Shanghai Jiao Tong University, 2019.
|
4 |
兰玉彬, 赵德楠, 张彦斐, 等. 生态无人农场模式探索及发展展望[J]. 农业工程学报, 2021, 37(9): 312-327.
|
|
LAN Y B, ZHAO D N, ZHANG Y F, et al. Exploration and development prospect of eco-unmanned farm modes[J]. Transactions of the Chinese society of agricultural engineering, 2021, 37(9): 312-327.
|
5 |
刘成良, 林洪振, 李彦明, 等. 农业装备智能控制技术研究现状与发展趋势分析[J]. 农业机械学报, 2020, 51(1): 1-18.
|
|
LIU C L, LIN H Z, LI Y M, et al. Analysis on status and development trend of intelligent control technology for agricultural equipment[J]. Transactions of the Chinese society for agricultural machinery, 2020, 51(1): 1-18.
|
6 |
LI S C, XU H Z, JI Y H, et al. Development of a following agricultural machinery automatic navigation system[J]. Computers and electronics in agriculture, 2019, 158: 335-344.
|
7 |
周俊, 何永强. 农业机械导航路径规划研究进展[J]. 农业机械学报, 2021, 52(9): 1-14.
|
|
ZHOU J, HE Y Q. Research progress on navigation path planning of agricultural machinery[J]. Transactions of the Chinese society for agricultural machinery, 2021, 52(9): 1-14.
|
8 |
罗锡文, 廖娟, 胡炼, 等. 我国智能农机的研究进展与无人农场的实践[J]. 华南农业大学学报, 2021, 42(6): 8-17, 5.
|
|
LUO X W, LIAO J, HU L, et al. Research progress of intelligent agricultural machinery and practice of unmanned farm in China[J]. Journal of South China agricultural university, 2021, 42(6): 8-17, 5.
|
9 |
JEON C W, KIM H J, YUN C, et al. Design and validation testing of a complete paddy field-coverage path planner for a fully autonomous tillage tractor[J]. Biosystems engineering, 2021, 208: 79-97.
|
10 |
NILSSON R S, ZHOU K. Method and bench-marking framework for coverage path planning in arable farming[J]. Biosystems engineering, 2020, 198: 248-265.
|
11 |
陈凯, 解印山, 李彦明, 等. 多约束情形下的农机全覆盖路径规划方法[J]. 农业机械学报, 2022, 53(5): 17-26, 43.
|
|
CHEN K, XIE Y S, LI Y M, et al. Full coverage path planning method of agricultural machinery under multiple constraints[J]. Transactions of the Chinese society for agricultural machinery, 2022, 53(5): 17-26, 43.
|
12 |
VAHDANJOO M, ZHOU K, SØRENSEN C A G. Route planning for agricultural machines with multiple depots: Manure application case study[J]. Agronomy, 2020, 10(10): ID 1608.
|
13 |
马全坤, 张彦斐, 宫金良. 基于记忆模拟退火和A*算法的农业机器人遍历路径规划[J]. 华南农业大学学报, 2020, 41(4): 127-132.
|
|
MA Q K, ZHANG Y F, GONG J L. Traversal path planning of agricultural robot based on memory simulated annealing and A* algorithm[J]. Journal of South China agricultural university, 2020, 41(4): 127-132.
|
14 |
SHEN M W, WANG S Z, WANG S A, et al. Simulation study on coverage path planning of autonomous tasks in hilly farmland based on energy consumption model[J]. Mathematical problems in engineering, 2020, 2020: 1-15.
|
15 |
申梦伟. 丘陵山地田间作业路径规划研究与试验[D]. 北京: 中国农业科学院, 2021.
|
|
SHEN M W. Research and experiment of field work path planning in hilly and mountainous regions[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021.
|
16 |
HU X Z, JIANG Z H, XU C C. Vehicle path planning fusion algorithm based on road network[C]// 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC). Piscataway, New Jersey, USA: IEEE, 2020: 98-102.
|
17 |
LYU D S, CHEN Z W, CAI Z S, et al. Robot path planning by leveraging the graph-encoded Floyd algorithm[J]. Future generation computer systems, 2021, 122: 204-208.
|
18 |
WANG L N, WANG H J, YANG X, et al. Research on smooth path planning method based on improved ant colony algorithm optimized by Floyd algorithm[J]. Frontiers in neurorobotics, 2022, 16: ID 955179.
|
19 |
LEI T, LUO C M, BALL J E, et al. A graph-based ant-like approach to optimal path planning[C]// 2020 IEEE Congress on Evolutionary Computation (CEC). Piscataway, New Jersey, USA: IEEE, 2020: 1-6.
|
20 |
AJEIL F H, IBRAHEEM I K, AZAR A T, et al. Grid-based mobile robot path planning using aging-based ant colony optimization algorithm in static and dynamic environments[J]. Sensors, 2020, 20(7): ID 1880.
|
21 |
周庆特. 考虑时变性的车辆与无人机联合配送路径规划问题[D]. 北京: 清华大学, 2019.
|
|
ZHOU Q T. The time dependent traveling salesman problem with drone[D]. Beijing: Tsinghua University, 2019.
|
22 |
李艳生, 万勇, 张毅, 等. 基于人工蜂群-自适应遗传算法的仓储机器人路径规划[J]. 仪器仪表学报, 2022, 43(4): 282-290.
|
|
LI Y S, WAN Y, ZHANG Y, et al. Path planning for warehouse robot based on the artificial bee colony-adaptive genetic algorithm[J]. Chinese journal of scientific instrument, 2022, 43(4): 282-290.
|
23 |
圣文顺, 徐爱萍, 徐刘晶. 基于蚁群算法与遗传算法的TSP路径规划仿真[J]. 计算机仿真, 2022, 39(12): 398-402, 412.
|
|
SHENG W S, XU A P, XU L J. Simulation of traveling salesman path planning based on ant colony algorithm and genetic algorithm[J]. Computer simulation, 2022, 39(12): 398-402, 412.
|
24 |
申航宇. 灾害情况下无人机与车辆协同路径规划研究[D]. 成都: 西华大学, 2021.
|
|
SHEN H Y. Research on collaborative path planning of UAV and vehicle in disasters[D]. Chengdu: Xihua University, 2021.
|
25 |
邵敏. 面向智能农机作业的全覆盖路径规划研究[D]. 合肥: 安徽农业大学, 2021.
|
|
SHAO M. Research on complete coverage path planning for intelligent agricultural machinery[D]. Hefei: Anhui Agricultural University, 2021.
|