1 |
YIN X, WANG Y X, CHEN Y L, et al. Development of autonomous navigation controller for agricultural vehicles[J]. International journal of agricultural and biological engineering, 2020, 13(4): 70-76.
|
2 |
柳景斌, 毛井锋, 吕海霞, 等. BDS/GPS组合定位可靠性分析与粗差探测研究[J]. 武汉大学学报(信息科学版), 2023, 48(2): 214-223.
|
|
LIU J B, MAO J F, LYU H X, et al. Reliability analysis and gross error detection of BDS/GPS combined positioning[J]. Geomatics and information science of Wuhan university, 2023, 48(2): 214-223.
|
3 |
YOUSUF S, KADRI M B. Information fusion of GPS, INS and odometer sensors for improving localization accuracy of mobile robots in indoor and outdoor applications[J]. Robotica, 2021, 39(2): 250-276.
|
4 |
THANPATTRANON P, AHAMED T, TAKIGAWA T. Navigation of autonomous tractor for orchards and plantations using a laser range finder: Automatic control of trailer position with tractor[J]. Biosystems engineering, 2016, 147: 90-103.
|
5 |
BLOK P M, VAN BOHEEMEN K, VAN EVERT F K, et al. Robot navigation in orchards with localization based on Particle filter and Kalman filter[J]. Computers and electronics in agriculture, 2019, 157(C): 261-269.
|
6 |
UNDERWOOD J P, JAGBRANT G, NIETO J I, et al. LiDAR-based tree recognition and platform localization in orchards[J]. Journal of field robotics, 2015, 32(8): 1056-1074.
|
7 |
BESL P J, MCKAY N D. Method for registration of 3-D shapes[C]// Proc SPIE 1611, sensor fusion IV: Control paradigms and data structures. Burlingame, California, USA: SPIE, 1992, 1611: 586-606.
|
8 |
BIBER P, STRASSER W. The normal distributions transform: a new approach to laser scan matching[C]// Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No.03CH37453. Piscataway, JerseyNew, USA: IEEE, 2003, 3: 2743-2748.
|
9 |
SAARINEN J, ANDREASSON H, STOYANOV T, et al. Normal Distributions Transform Occupancy Maps: Application to large-scale online 3D mapping[C]// 2013 IEEE International Conference on Robotics and Automation. Piscataway, New Jersey, USA: IEEE, 2013: 2233-2238.
|
10 |
HU F J, REN T J, SHI S B. Discrete point cloud registration using the 3D normal distribution transformation based newton iteration[J]. Journal of multimedia, 2014, 9(7): ID 934.
|
11 |
WANG Q S, ZHANG J. Point cloud registration algorithm based on combination of NDT and PLICP[C]// 2019 15th International Conference on Computational Intelligence and Security (CIS). Piscataway, New Jersey, USA: IEEE, 2019
|
12 |
AKAI N, MORALES L Y, TAKEUCHI E, et al. Robust localization using 3D NDT scan matching with experimentally determined uncertainty and road marker matching[C]// 2017 IEEE Intelligent Vehicles Symposium (IV). Piscataway, New Jersey, USA: IEEE, 2017: 1356-1363.
|
13 |
KALLASI F, RIZZINI D L, CASELLI S. Fast keypoint features from laser scanner for robot localization and mapping[J]. IEEE robotics and automation letters, 2016, 1(1): 176-183.
|
14 |
金泰宇, 黄劲松. 一种基于语义地图的激光雷达定位方法[J]. 测绘地理信息, 2022, 47(4): 28-32.
|
|
JIN T Y, HUANG J S. A LiDAR positioning methodology based on semantic map[J]. Journal of geomatics, 2022, 47(4): 28-32.
|
15 |
LEVINSON J, THRUN S. Robust vehicle localization in urban environments using probabilistic maps[C]// 2010 IEEE International Conference on Robotics and Automation. Piscataway, New Jersey, USA: IEEE, 2010: 4372-4378.
|
16 |
HATA A, WOLF D. Road marking detection using LiDAR reflective intensity data and its application to vehicle localization[C]// 17th International IEEE Conference on Intelligent Transportation Systems (ITSC). Piscataway, New Jersey, USA: IEEE, 2014: 584-589.
|
17 |
WAN G W, YANG X L, CAI R L, et al. Robust and precise vehicle localization based on multi-sensor fusion in diverse city scenes[C]// 2018 IEEE International Conference on Robotics and Automation (ICRA). Piscataway, New Jersey, USA: IEEE, 2018: 4670-4677.
|
18 |
邓泽武, 胡钊政, 周哲, 等. 融合激光雷达与双层地图模型的智能车定位[J]. 汽车工程, 2022, 44(7): 1018-1026.
|
|
DENG Z W, HU Z Z, ZHOU Z, et al. Intelligent vehicle positioning by fusing LiDAR and double-layer map model[J]. Automotive engineering, 2022, 44(7): 1018-1026.
|
19 |
崔文, 薛棋文, 李庆玲, 等. 基于三维点云地图和ESKF的无人车融合定位方法[J]. 工矿自动化, 2022, 48(9): 116-122.
|
|
CUI W, XUE Q W, LI Q L, et al. Unmanned vehicle fusion positioning method based on 3D point cloud map and ESKF[J]. Journal of mine automation, 2022, 48(9): 116-122.
|
20 |
张文玥, 娄小平, 陈福笛. 移动机器人多传感器融合定位仿真研究[J]. 计算机仿真, 2023, 40(3): 436-441.
|
|
ZHANG W Y, LOU X P, CHEN F D. Research on multi-sensor fusion localization simulation of mobile robot[J]. Computer simulation, 2023, 40(3): 436-441.
|
21 |
涂远泯, 刘飞飞, 曾波华, 等. 基于多传感器融合技术的移动机器人位姿估计方法研究[J]. 制造业自动化, 2023, 45(11): 137-141.
|
|
TU Y M, LIU F F, ZENG B H, et al. Research on pose estimation method of mobile robot based on multi-sensor fusion technology[J]. Manufacturing automation, 2023, 45(11): 137-141.
|
22 |
BOGOSLAVSKYI I, STACHNISS C. Fast range image-based segmentation of sparse 3D laser scans for online operation[C]// 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). New York, USA: ACM, 2016.
|
23 |
杨奇峰, 曲道奎, 徐方. 基于3D-NDT的移动机器人定位算法研究[J]. 控制工程, 2020, 27(4): 613-619.
|
|
YANG Q F, QU D K, XU F. Localization algorithm of outdoor mobile robot based on 3D-NDT[J]. Control engineering of China, 2020, 27(4): 613-619.
|
24 |
MILIOTO A, VIZZO I, BEHLEY J, et al. RangeNet ++: Fast and accurate LiDAR semantic segmentation[C]// 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). New York, USA: ACM, 2019: 4213-4220.
|
25 |
KALMAN R E. A new approach to linear filtering and prediction problems[J]. Journal of basic engineering, 1960, 82(1): 35-45.
|
26 |
GALATI R, REINA G, MESSINA A, et al. Survey and navigation in agricultural environments using robotic technologies[C]// 2017 14th IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS). Piscataway, New Jersey, USA: IEEE, 2017: 1-6.
|
27 |
YAN Y X, ZHANG B H, ZHOU J, et al. Real-time localization and mapping utilizing multi-sensor fusion and visual-IMU-wheel odometry for agricultural robots in unstructured, dynamic and GPS-denied greenhouse environments[J]. Agronomy, 2022, 12(8): ID 1740.
|