1 |
刘丹, 巩前文, 杨文杰. 改革开放40年来中国耕地保护政策演变及优化路径[J]. 中国农村经济, 2018(12): 37-51.
|
|
LIU D, GONG Q W, YANG W J. The evolution of farmland protection policy and optimization path from 1978 to 2018[J]. Chinese rural economy, 2018(12): 37-51.
|
2 |
杨翠红, 林康, 高翔, 等. “十四五”时期我国粮食生产的发展态势及风险分析[J]. 中国科学院院刊, 2022, 37(8): 1088-1098.
|
|
YANG C H, LIN K, GAO X, et al. Analysis on development and risks of China's food production during 14th five-year plan period[J]. Bulletin of Chinese academy of sciences, 2022, 37(8): 1088-1098.
|
3 |
于法稳, 代明慧, 林珊. 基于粮食安全底线思维的耕地保护: 现状、困境及对策[J]. 经济纵横, 2022(12): 9-16.
|
|
YU F W, DAI M H, LIN S. Cultivated land protection based on bottom line thinking of food security: Current situation, difficulties and countermeasures[J]. Economic review journal, 2022(12): 9-16.
|
4 |
王佑汉. 基于遥感的四川省撂荒耕地多尺度空间格局及机制研究[D]. 成都: 成都理工大学, 2020.
|
|
WANG Y H. Spatial heterogeneity and mechanism of abandoned farmland in different research scales in the Sichuan Province based on remote sense[D]. Chengdu: Chengdu University of Technology, 2020.
|
5 |
吴培强, 张杰, 马毅, 等. 近20a来我国红树林资源变化遥感监测与分析[J]. 海洋科学进展, 2013, 31(3): 406-414.
|
|
WU P Q, ZHANG J, MA Y, et al. Remote sensing monitoring and analysis of the changes of mangrove resources in China in the past 20 years[J]. Advances in marine science, 2013, 31(3): 406-414.
|
6 |
邴芳飞, 金永涛, 张文豪, 等. 基于机器学习的遥感影像云检测研究进展[J]. 遥感技术与应用, 2023, 38(1): 129-142.
|
|
BING F F, JIN Y T, ZHANG W H, et al. Research progress of remote sensing image cloud detection based on machine learning[J]. Remote sensing technology and application, 2023, 38(1): 129-142.
|
7 |
MNIH V, HINTON G E. Learning to detect roads in high-resolution aerial images[C]// Proceedings of the 11th European Conference on Computer Vision: Part VI. New York, USA: ACM, 2010: 210-223.
|
8 |
SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(4): 640-651.
|
9 |
RONNEBERGER O, FISCHER P, BROX T. U-net: Convolutional networks for biomedical image segmentation[M]// Lecture notes in computer science. Cham: Springer International Publishing, 2015: 234-241.
|
10 |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. Semantic image segmentation with deep convolutional nets and fully connected CRFs[J]. Computerscience, 2014(4): 357-361.
|
11 |
CHEN L C, PAPANDREOU G, KOKKINOS I, et al. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs[J]. IEEE transactions on pattern analysis and machine intelligence, 2018, 40(4): 834-848.
|
12 |
CHEN L C, ZHU Y K, PAPANDREOU G, et al. Encoder-decoder with atrous separable convolution for semantic image segmentation[C]// Computer Vision - ECCV 2018: 15th European Conference, Munich, Germany, September 8-14, 2018, Proceedings, Part VII. New York, USA: ACM, 2018: 833-851.
|
13 |
CHEN L C, PAPANDREOU G, SCHROFF F, et al. Rethinking atrous convolution for semantic image segmentation[EB/OL]. arXiv: 1706.05587, 2017.
|
14 |
ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2017: 2881-2890.
|
15 |
LI M M, LONG J, STEIN A, et al. Using a semantic edge-aware multi-task neural network to delineate agricultural parcels from remote sensing images[J]. ISPRS journal of photogrammetry and remote sensing, 2023(200): 24-40.
|
16 |
PERSELLO C, TOLPEKIN V A, BERGADO J R, et al. Delineation of agricultural fields in smallholder farms from satellite images using fully convolutional networks and combinatorial grouping[J]. Remote sensing of environment, 2019, 231: ID 111253.
|
17 |
LIU S J, LIU L C, XU F, et al. A deep learning method for individual arable field (IAF) extraction with cross-domain adversarial capability[J]. Computers and electronics in agriculture, 2022(203): ID 107473.
|
18 |
刘东杰. 联合波谱和地形特征的深度学习梯田提取方法探讨[D]. 兰州: 兰州大学, 2022.
|
|
LIU D J. Study on terraced field extraction with A deep learning method combined with both spectral and topographic features[D]. Lanzhou: Lanzhou University, 2022.
|
19 |
李国清, 柏永青, 杨轩, 等. 基于深度学习的高分辨率遥感影像土地覆盖自动分类方法[J]. 地球信息科学学报, 2021, 23(9): 1690-1704.
|
|
LI G Q, BAI Y Q, YANG X, et al. Automatic deep learning land cover classification methods of high-resolution remotely sensed images[J]. Journal of geo-information science, 2021, 23(9): 1690-1704.
|
20 |
LI Z H, HE W, CHENG M F, et al. SinoLC-1: The first 1 m resolution national-scale land-cover map of China created with a deep learning framework and open-access data[J]. Earth system science data, 2023, 15(11): 4749-4780.
|
21 |
ZHOU Z W, SIDDIQUEE M M R, TAJBAKHSH N, et al. UNet++: Redesigning skip connections to exploit multiscale features in image segmentation[J]. IEEE transactions on medical imaging, 2020, 39(6): 1856-1867.
|
22 |
BREIMAN L. Random forests[J]. Machine learning, 2001, 45(1): 5-32.
|
23 |
胡乃勋, 陈涛, 甄娜, 等. 基于卷积神经网络的面向对象露天采场提取[J]. 遥感技术与应用, 2021, 36(2): 265-274.
|
|
HU N X, CHEN T, ZHEN N, et al. Object-oriented open pit extraction based on convolutional neural network[J]. Remote sensing technology and application, 2021, 36(2): 265-274.
|
24 |
DURO D C, FRANKLIN S E, DUBÉ M G. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery[J]. Remote sensing of environment, 2012, 118(2): 259-272.
|
25 |
冯文卿, 眭海刚, 涂继辉, 等. 高分辨率遥感影像的随机森林变化检测方法[J]. 测绘学报, 2017, 46(11): 1880-1890.
|
|
FENG W Q, SUI H G, TU J H, et al. Change detection method for high resolution remote sensing images using random forest[J]. Acta geodaetica et cartographica Sinica, 2017, 46(11): 1880-1890.
|
26 |
王超, 王帅, 陈晓, 等. 联合UNet++和多级差分模块的多源光学遥感影像对象级变化检测[J]. 测绘学报, 2023, 52(2): 283-296.
|
|
WANG C, WANG S, CHEN X, et al. Object-level change detection of multi-sensor optical remote sensing images combined with UNet++ and multi-level difference module[J]. Acta geodaetica et cartographica Sinica, 2023, 52(2): 283-296.
|
27 |
黄冬青, 徐伟铭, 许文迪, 等. 基于DeeplabV3+网络的高分遥感影像分类[J]. 激光与光电子学进展, 2023, 60(16): 346-355.
|
|
HUANG D Q, XU W M, XU W D, et al. High-resolution remote sensing image classification based on DeeplabV3+Network[J]. Laser & optoelectronics progress, 2023, 60(16): 346-355.
|
28 |
许玥, 冯梦如, 皮家甜, 等. 基于深度学习模型的遥感图像分割方法[J]. 计算机应用, 2019, 39(10): 2905-2914.
|
|
XU Y, FENG M R, PI J T, et al. Remote sensing image segmentation method based on deep learning model[J]. Journal of computer applications, 2019, 39(10): 2905-2914.
|
29 |
李倩楠, 张杜娟, 潘耀忠, 等. MPSPNet和UNet网络下山东省高分辨耕地遥感提取[J]. 遥感学报, 2023, 27(2): 471-491.
|
|
LI Q N, ZHANG D J, PAN Y Z, et al. High-resolution cropland extraction in Shandong province using MPSPNet and UNet network[J]. National remote sensing bulletin, 2023, 27(2): 471-491.
|
30 |
吴文斌, 杨鹏, 张莉, 等. 四类全球土地覆盖数据在中国区域的精度评价[J]. 农业工程学报, 2009, 25(12): 167-173, 407.
|
|
WU W B, YANG P, ZHANG L, et al. Accuracy assessment of four global land cover datasets in China[J]. Transactions of the Chinese society of agricultural engineering, 2009, 25(12): 167-173, 407.
|
31 |
陈逸聪, 邵华, 李杨. 多源土地覆被产品在长三角地区的一致性分析与精度评价[J]. 农业工程学报, 2021, 37(6): 142-150.
|
|
CHEN Y C, SHAO H, LI Y. Consistency analysis and accuracy assessment of multi-source land cover products in the Yangtze River Delta[J]. Transactions of the Chinese society of agricultural engineering, 2021, 37(6): 142-150.
|
32 |
吴宗洋, 蔡卓雅, 郭英, 等. 黄河流域多源遥感土地覆被数据精度评价与一致性分析[J]. 中国生态农业学报(中英文), 2023, 31(6): 917-927.
|
|
WU Z Y, CAI Z Y, GUO Y, et al. Accuracy evaluation and consistency analysis of multi-source remote sensing land cover data in the Yellow River Basin[J]. Chinese journal of eco-agriculture, 2023, 31(6): 917-927.
|