1 |
YU J Z, BAI Y F, YANG S Q, et al. Stolon-YOLO: A detecting method for stolon of strawberry seedling in glass greenhouse[J]. Computers and electronics in agriculture, 2023, 215: ID 108447.
|
2 |
李龙, 叶文军, 陈和秀, 等. 草莓设施基质育苗技术研究[J]. 中国南方果树, 2024, 53(2): 186-190.
|
|
LI L, YE W J, CHEN H X, et al. Study on facility substrate seedling production technique of strawberry[J]. South China fruits, 2024, 53(2): 186-190.
|
3 |
武冲, 刘现国, 姜莉莉, 等. 草莓一级子苗近母株固定育苗技术[J]. 落叶果树, 2023, 55(2): 75-77.
|
|
WU C, LIU X G, JIANG L L, et al. Fixed seedling raising technology of strawberry first-class seedling near mother plant[J]. Deciduous fruits, 2023, 55(2): 75-77.
|
4 |
曹旭波, 文娟. 草莓高架扦插穴盘育苗技术[J]. 西北园艺, 2022(9): 19-21.
|
5 |
JIANG Z H, HU Y, JIANG H Y, et al. Design and optimization of end-effector for automatic plug seedling transplanter in greenhouses[C]// 2015 ASABE Annual International Meeting. St. Joseph, Michigan, USA: ASABE, 2015(2): 1322-1330.
|
6 |
FENG Q C, ZHAO C J, JIANG K, et al. Design and test of tray-seedling sorting transplanter[J]. International journal of agricultural and biological engineering, 2015, 8(2): 14-20.
|
7 |
胡飞, 尹文庆, 陈彩蓉, 等. 基于机器视觉的穴盘幼苗识别与定位研究[J]. 西北农林科技大学学报(自然科学版), 2013, 41(5): 183-188.
|
|
HU F, YIN W Q, CHEN C R, et al. Recognition and localization of plug seedling based on machine vision[J]. Journal of northwest A & F university (natural science edition), 2013, 41(5): 183-188.
|
8 |
王纪章, 顾容榕, 孙力, 等. 基于Kinect相机的穴盘苗生长过程无损监测方法[J]. 农业机械学报, 2021, 52(2): 227-235.
|
|
WANG J Z, GU R R, SUN L, et al. Non-destructive monitoring of plug seedling growth process based on kinect camera[J]. Transactions of the Chinese society for agricultural machinery, 2021, 52(2): 227-235.
|
9 |
张国栋, 范开钧, 王海, 等. 基于机器视觉的穴盘苗检测试验研究[J]. 农机化研究, 2020, 42(4): 175-179.
|
|
ZHANG G D, FAN K J, WANG H, et al. Experimental study on detection of plug tray seedlings based on machine vision[J]. Journal of agricultural mechanization research, 2020, 42(4): 175-179.
|
10 |
曹丹丹, 朱玉桃, 王寅初, 等. 基于深度学习的穴盘苗缺苗穴位检测[J]. 农机化研究, 2023, 45(3): 210-215.
|
|
CAO D D, ZHU Y T, WANG Y C, et al. Detection of missing holes in plug seedlings based on deep learning[J]. Journal of agricultural mechanization research, 2023, 45(3): 210-215.
|
11 |
XIAO Z, LIU X X, TAN Y, et al. Recognition method of No-seedling grids of trays based on deep convolutional neural network[C]// 2019 Chinese Control Conference (CCC). Piscataway, New Jersey, USA: IEEE, 2019: 8695-8700.
|
12 |
崔永杰, 朱玉桃, 马利, 等. 穴盘缺苗气吸式基质剔除装置设计与试验[J]. 农业机械学报, 2022, 53(11): 140-151.
|
|
CUI Y J, ZHU Y T, MA L, et al. Design and experiment of air-suction substrates removal device for plug lack of seedlings trays[J]. Transactions of the Chinese society for agricultural machinery, 2022, 53(11): 140-151.
|
13 |
司来强. 蔬菜穴盘苗自动识别及剔补装置设计与试验[D]. 洛阳: 河南科技大学, 2023.
|
|
SI L Q. Design and experiment of automatic identification and picking device for vegetable plug seedlings[D]. Luoyang: Henan University of Science and Technology, 2023.
|
14 |
高杨, 曹仰杰, 段鹏松. 神经网络模型轻量化方法综述[J]. 计算机科学, 2024, 51(S1): 23-33.
|
|
GAO Y, CAO Y J, DUAN P S. Summary of lightweight methods of neural network model[J]. Computer science, 2024, 51(S1): 23-33.
|
15 |
FAN S X, LIANG X T, HUANG W Q, et al. Real-time defects detection for apple sorting using NIR cameras with pruning-based YOLOv4 network[J]. Computers and electronics in agriculture, 2022, 193: ID 106715.
|
16 |
梁晓婷. 基于深度学习的水果表面缺陷实时检测方法研究[D]. 上海: 上海海洋大学, 2023.
|
|
LIANG X T. Research on real-time detection method of fruit surface defects based on deep learning[D]. Shanghai: Shanghai Ocean University, 2023.
|
17 |
周晓肖, 杨肖芳, 李伟龙. 穴盘苗与裸根苗对草莓生长结果的影响[J]. 中国南方果树, 2023, 52(3): 170-173, 180.
|
|
ZHOU X X, YANG X F, LI W L. Effects of plug seedlings and bare root seedlings on the growth and fruiting of strawberry[J]. South China fruits, 2023, 52(3): 170-173, 180.
|
18 |
TZUTALIN D. LabelImg[CP/OL]. HumanSignal. [2024-8-1].
|
19 |
WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2023: 7464-7475.
|
20 |
GE Z, LIU S T, WANG F, et al. YOLOX: Exceeding YOLO series in 2021[EB/OL]. arXiv: 2107.08430, 2021.
|
21 |
LEE J, PARK S, MO S, et al. Layer-adaptive sparsity for the magnitude-based pruning[EB/OL]. arXiv:2010.07611, 2020.
|
22 |
FANG G F, MA X Y, SONG M L, et al. DepGraph: Towards any structural pruning[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2023: 16091-16101.
|
23 |
PASZKE A, GROSS S, MASSA F, et al. Pytorch: An imperative style, high-performance deep learning library[EB/OL]. arXiv:1912.01703, 2019.
|
24 |
HOWARD A, SANDLER M, CHEN B, et al. Searching for MobileNetV3[C]// 2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2019: 1314-1324.
|
25 |
MA N N, ZHANG X Y, ZHENG H T, et al. ShuffleNet V2: practical guidelines for efficient CNN architecture design[M]// Lecture Notes in Computer Science. Cham: Springer International Publishing, 2018: 122-138.
|
26 |
LIU X Y, PENG H W, ZHENG N X, et al. EfficientViT: Memory efficient vision transformer with cascaded group attention[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2023: 14420-14430.
|
27 |
CHEN J R, KAO S H, HE H, et al. Run, don't walk: Chasing higher FLOPS for faster neural networks[C]// 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2023: 12021-12031.
|