1 |
中国报告大厅. 2022年玫瑰行业分析[EB/OL]. [2023-12-02].
|
2 |
光明网. 年产量达180亿枝:探索云南鲜切花产业背后的科技力量[EB/OL]. (2023-08-22).
|
3 |
DENG L M, LI J, HAN Z Z. Online defect detection and automatic grading of carrots using computer vision combined with deep learning methods[J]. LWT-food science and technology, 2021, 149: ID 111832.
|
4 |
STEINMETZ V, DELWICHE M J, GILES D K, et al. Sorting cut roses with machine vision[J]. Transactions of the ASAE, 1994, 37(4): 1347-1353.
|
5 |
HIARY H, SAADEH H, SAADEH M, et al. Flower classification using deep convolutional neural networks[J]. IET computer vision, 2018, 12(6): 855-862.
|
6 |
METE B R, ENSARI T. Flower classification with deep CNN and machine learning algorithms[C]// 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). Piscataway, New Jersey, USA: IEEE, 2019: 1-5.
|
7 |
赵晓龙. 基于神经网络的玫瑰花图像等级分类识别研究[D]. 昆明: 云南大学, 2021.
|
|
ZHAO X L. Research on classification and recognition of rose image based on neural network[D]. Kunming: Yunnan University, 2021.
|
8 |
孙鑫岩. 基于深度学习的鲜切花分级算法[D]. 南京: 南京林业大学, 2022.
|
|
SUN X Y. Fresh cut flower grading algorithm based on deep learning[D]. Nanjing: Nanjing Forestry University, 2022.
|
9 |
吴宇. 基于深度学习的玫瑰鲜切花分级研究[D]. 昆明: 云南大学, 2021.
|
|
WU Y. Quality Grading Evaluation of Cut Rose based on Deep Learning[D]. Kunming: Yunnan University, 2021.
|
10 |
JOCHER G, CHAURASIA A, QIU J. YOLO by Ultralytics[EB/OL]. (2023-06-30) [2023-12-31].
|
11 |
国家质量技术监督局. 主要花卉产品等级 第1部分:鲜切花: GB/T 18247.1—2000 [S]. 北京: 中国标准出版社, 2001.
|
|
State Bureau of Quality and Technical Supervision of the People's Republic of China. Product grade for major ornamental plants-Part 1: Cut flowers: GB/T 18247.1—2000 [S]. Beijing: Standards Press of China, 2001.
|
12 |
FU J, LIU J, TIAN H J, et al. Dual attention network for scene segmentation[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2019: 3141-3149.
|
13 |
WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// European Conference on Computer Vision. Berlin, German: Springer, 2018: 3-19.
|
14 |
SIFRE L. Rigid-motion scattering for image classification[D]. Paris: École Polytechnique, 2014.
|
15 |
REDMON J, FARHADI A. YOLO9000: better, faster, stronger[C]// 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2017: 6517-6525.
|
16 |
JIANG Z, ZHAO L, LI S, et al. Real-time object detection method based on improved YOLOv4-tiny[EB/OL]. arXiv: 2011.04244, 2020.
|
17 |
GLENN J.YOLOv 5. [EB/OL]. Git Code,2020. [2023-12-31]
|
18 |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, New Jersey, USA: IEEE, 2018: 8759-8768.
|
19 |
REN S, HE K, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]// Advances in Neural Information Processing Systems. Cambridge, USA: MIT Press, 2015: 91-99.
|
20 |
LIU W, ANGUELOV D, ERHAN D, et al. SSD: Single shot multibox detector[C]// European Conference on Computer Vision. Berlin, German: Springer, 2016: 21-37.
|
21 |
REDMON J, FARHADI A. YOLOv3: An incremental improvement[EB/OL]. arXiv: 1804.02767, 2018.
|
22 |
高芳芳, 武振超, 索睿, 等. 基于深度学习与目标跟踪的苹果检测与视频计数方法[J]. 农业工程学报, 2021, 37(21): 217-224.
|
|
GAO F F, WU Z C, SUO R, et al. Apple detection and counting using real-time video based on deep learning and object tracking[J]. Transactions of the Chinese society of agricultural engineering, 2021, 37(21): 217-224.
|
23 |
施行. 基于视觉技术的红提串品质无损检测与分级[D]. 武汉: 华中农业大学, 2021.
|
|
SHI H. Non-destructive detection and grading of the quality of red grape strings based on visual technology[D]. Wuhan: Huazhong Agricultural University, 2021.
|
24 |
王俊杰. 基于深度学习的红枣缺陷检测分级技术研究[D]. 西安: 陕西科技大学, 2020.
|
|
WANG J J. Research on defect detection and classification of jujube based on deep learning[D]. Xi'an: Shaanxi University of Science & Technology, 2020.
|
25 |
AMAN M. Postharvest loss estimation of cut rose (Rosa hybrida) flower farms: Economic analysis in East Shoa Zone, Ethiopia[J]. International journal of sustainable economy, 2014, 6(1): ID 82.
|