1 |
张镇府. 基于机器视觉的圈养鲈鱼智能决策投饵系统的研究[D]. 武汉: 华中农业大学, 2022.
|
|
ZHANG Z F. Research on intelligent decision-making feeding system for cage-cultured seabass based on machine vision[D]. Wuhan: Huazhong Agricultural University, 2022.
|
2 |
ZHOU C, XU D M, CHEN L, et al. Evaluation of fish feeding intensity in aquaculture using a convolutional neural network and machine vision[J]. Aquaculture, 2019, 507: 457- 465.
|
3 |
KIM Y. Convolutional neural networks for sentence classification[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg, Pennsylvania, USA: Association for Computational Linguistics, 2014: 1746- 1751.
|
4 |
LIPTON Z C. A critical review of recurrent neural networks for sequence learning[EB/OL]. arXiv: abs/1506.00019, 2015.
|
5 |
杨锋, 姚晓通. 基于改进YOLOv8的小麦叶片病虫害检测轻量化模型[J]. 智慧农业(中英文), 2024, 6( 1): 147- 157.
|
|
YANG F, YAO X T. Lightweighted wheat leaf diseases and pests detection model based on improved YOLOv8[J]. Smart agriculture, 2024, 6( 1): 147- 157.
|
6 |
HU X L, LIU Y, ZHAO Z X, et al. Real-time detection of uneaten feed pellets in underwater images for aquaculture using an improved YOLO-V4 network[J]. Computers and electronics in agriculture, 2021, 185: ID 106135.
|
7 |
冯双星. 基于深度学习的鱼类摄食强度探测与智能投喂系统研究[D]. 南宁: 广西大学, 2022.
|
|
FENG S X. Deep learning based fish feeding intensity detection and intelligent feeding system[D]. Nanning: Guangxi University, 2022.
|
8 |
张佳林, 徐立鸿, 刘世晶. 基于水下机器视觉的大西洋鲑摄食行为分类[J]. 农业工程学报, 2020, 36( 13): 158- 164.
|
|
ZHANG J L, XU L H, LIU S J. Classification of Atlantic salmon feeding behavior based on underwater machine vision[J]. Transactions of the Chinese society of agricultural engineering, 2020, 36( 13): 158- 164.
|
9 |
郭强, 杨信廷, 周超, 等. 基于形状与纹理特征的鱼类摄食状态检测方法[J]. 上海海洋大学学报, 2018, 27( 2): 181- 189.
|
|
GUO Q, YANG X T, ZHOU C, et al. Fish feeding behavior detection method based on shape and texture features[J]. Journal of Shanghai ocean university, 2018, 27( 2): 181- 189.
|
10 |
YANG L, CHEN Y Y, SHEN T, et al. A BlendMask-VoVNetV2 method for quantifying fish school feeding behavior in industrial aquaculture[J]. Computers and electronics in agriculture, 2023, 211: ID 108005.
|
11 |
YANG L, YU H H, CHENG Y L, et al. A dual attention network based on efficientNet-B2 for short-term fish school feeding behavior analysis in aquaculture[J]. Computers and electronics in agriculture, 2021, 187: ID 106316.
|
12 |
王鹤榕, 陈英义, 柴莹倩, 等. 融合VoVNetv2和置换注意力机制的鱼群摄食图像分割方法[J]. 智慧农业(中英文), 2023, 5( 4): 137- 149.
|
|
WANG H R, CHEN Y Y, CHAI Y Q, et al. Image segmentation method combined with VoVNetv2 and shuffle attention mechanism for fish feeding in aquaculture[J]. Smart agriculture, 2023, 5( 4): 137- 149.
|
13 |
徐立鸿, 黄薪, 刘世晶. 基于改进LRCN的鱼群摄食强度分类模型[J]. 农业机械学报, 2022, 53( 10): 236- 241.
|
|
XU L H, HUANG X, LIU S J. Recognition of fish feeding intensity based on improved LRCN[J]. Transactions of the Chinese society for agricultural machinery, 2022, 53( 10): 236- 241.
|
14 |
冯双星, 王丁弘, 潘良, 等. 基于轻量型 S3D 算法的鱼类摄食强度识别系统设计与试验[J]. 渔业现代化, 2023, 50( 3): 79- 86.
|
|
FENG S X, WANG D H, PAN L, et al. Implementation of fish feeding intensity identification system using light- weight S3D algorithm[J]. Fishery modernization, 2023, 50( 3): 79- 86.
|
15 |
黄平. 基于深度学习的鱼类摄食行为识别及精准养殖研究[D]. 南宁: 广西大学, 2022.
|
|
HUANG P. Research on fish feeding behavior recognition and precision culture based on deep learning[D]. Nanning: Guangxi University, 2022.
|
16 |
朱明, 张镇府, 黄凰, 等. 基于轻量级神经网络MobileNetV3-Small的鲈鱼摄食状态分类[J]. 农业工程学报, 2021, 37( 19): 165- 172.
|
|
ZHU M, ZHANG Z F, HUANG H, et al. Classification of perch ingesting condition using lightweight neural network MobileNetV3-Small[J]. Transactions of the Chinese society of agricultural engineering, 2021, 37( 19): 165- 172.
|
17 |
郭俊. 基于图像与声音信息的养殖鱼群摄食规律与投饵技术研究[D]. 宁波: 宁波大学, 2018.
|
|
GUO J. Research on feeding patterns and bait technology of fish culture based on information of image and sound[D]. Ningbo: Ningbo University, 2018.
|
18 |
KHANAM R, HUSSAIN M. YOLOv11: An overview of the key architectural enhancements[EB/OL]. arXiv: 2410. 17725. 2024.
|
19 |
刘杨. 基于深度学习的水下残饵检测方法研究与实现[D]. 扬州: 扬州大学, 2021.
|
|
LIU Y. Research and realization on underwater uneaten feed pellets detection method based on deep learning[D]. Yangzhou: Yangzhou University, 2021.
|
20 |
ZHAO H S, SHI J P, QI X J, et al. Pyramid scene parsing network[EB/OL]. arXiv: 1612.01105, 2017.
|
21 |
LI H L, LI J, WEI H B, et al. Slim-neck by GSConv: A lightweight-design for real-time detector architectures[J]. Journal of real-time image processing, 2024, 21( 3), ID 62.
|
22 |
CHEN C Y, LIU M Y, TUZEL O, et al. R-CNN for small object detection[M]// Lecture Notes in Computer Science. Cham: Springer International Publishing, 2017: 214- 230.
|
23 |
SERMANET P, FROME A, REAL E. Attention for fine-grained categorization[EB/OL]. arXiv: 1412.7054, 2015.
|
24 |
周华平, 宋明龙, 孙克雷. 一种轻量化的水下目标检测算法SG-Det[J]. 光电子·激光, 2023, 34( 2): 156- 165.
|
|
ZHOU H P, SONG M L, SUN K L. SG-Det: A lightweight underwater image target detection method[J]. Journal of optoelectronics·laser, 2023, 34( 2): 156- 165.
|
25 |
徐彦威, 李军, 董元方, 等. YOLO系列目标检测算法综述[J]. 计算机科学与探索, 2024, 18( 9): 2221- 2238.
|
|
XU Y W, LI J, DONG Y F, et al. Survey of development of YOLO object detection algorithms[J]. Journal of frontiers of computer science and technology, 2024, 18( 9): 2221- 2238.
|
26 |
ADARSH P, RATHI P, KUMAR M. YOLO v3-Tiny: Object Detection and Recognition using one stage improved model[C]// 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS). Piscataway, New Jersey, USA: IEEE, 2020: 687- 694.
|
27 |
LI C, LI L, et al. YOLOv6: A single-stage object detection framework for industrial applications[EB/OL]. arXiv: 2209.02976, 2022.
|
28 |
LI D W, XU L H, LIU H Y. Detection of uneaten fish food pellets in underwater images for aquaculture[J]. Aquacultural engineering, 2017, 78: 85- 94.
|
29 |
CAO J H, XU L H. Research on counting algorithm of residual feeds in aquaculture based on machine vision[C]// 2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC). Piscataway, New Jersey, USA: IEEE, 2018: 498- 503.
|
30 |
HOU S Y, LIU J C, WANG Y Q, et al. Research on fish bait particles counting model based on improved MCNN[J]. Computers and electronics in agriculture, 2022, 196: ID 106858.
|
31 |
WANG Y Q, YU X N, LIU J C, et al. Dynamic feeding method for aquaculture fish using multi-task neural network[J]. Aquaculture, 2022, 551: ID 737913.
|