| 1 | 张镇府. 基于机器视觉的圈养鲈鱼智能决策投饵系统的研究[D]. 武汉: 华中农业大学, 2022. | 
																													
																						|  |  ZHANG Z F. Research on intelligent decision-making feeding system for cage-cultured seabass based on machine vision[D]. Wuhan: Huazhong Agricultural University, 2022. | 
																													
																						| 2 |  ZHOU C,  XU D M,  CHEN L, et al. Evaluation of fish feeding intensity in aquaculture using a convolutional neural network and machine vision[J]. Aquaculture, 2019, 507: 457- 465. | 
																													
																						| 3 |  KIM Y. Convolutional neural networks for sentence classification[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP). Stroudsburg, Pennsylvania, USA: Association for Computational Linguistics, 2014: 1746- 1751. | 
																													
																						| 4 |  LIPTON Z C. A critical review of recurrent neural networks for sequence learning[EB/OL]. arXiv: abs/1506.00019, 2015. | 
																													
																						| 5 | 杨锋, 姚晓通. 基于改进YOLOv8的小麦叶片病虫害检测轻量化模型[J]. 智慧农业(中英文), 2024, 6( 1): 147- 157. | 
																													
																						|  |  YANG F,  YAO X T. Lightweighted wheat leaf diseases and pests detection model based on improved YOLOv8[J]. Smart agriculture, 2024, 6( 1): 147- 157. | 
																													
																						| 6 |  HU X L,  LIU Y,  ZHAO Z X, et al. Real-time detection of uneaten feed pellets in underwater images for aquaculture using an improved YOLO-V4 network[J]. Computers and electronics in agriculture, 2021, 185: ID 106135. | 
																													
																						| 7 | 冯双星. 基于深度学习的鱼类摄食强度探测与智能投喂系统研究[D]. 南宁: 广西大学, 2022. | 
																													
																						|  |  FENG S X. Deep learning based fish feeding intensity detection and intelligent feeding system[D]. Nanning: Guangxi University, 2022. | 
																													
																						| 8 | 张佳林, 徐立鸿, 刘世晶. 基于水下机器视觉的大西洋鲑摄食行为分类[J]. 农业工程学报, 2020, 36( 13): 158- 164. | 
																													
																						|  |  ZHANG J L,  XU L H,  LIU S J. Classification of Atlantic salmon feeding behavior based on underwater machine vision[J]. Transactions of the Chinese society of agricultural engineering, 2020, 36( 13): 158- 164. | 
																													
																						| 9 | 郭强, 杨信廷, 周超, 等. 基于形状与纹理特征的鱼类摄食状态检测方法[J]. 上海海洋大学学报, 2018, 27( 2): 181- 189. | 
																													
																						|  |  GUO Q,  YANG X T,  ZHOU C, et al. Fish feeding behavior detection method based on shape and texture features[J]. Journal of Shanghai ocean university, 2018, 27( 2): 181- 189. | 
																													
																						| 10 |  YANG L,  CHEN Y Y,  SHEN T, et al. A BlendMask-VoVNetV2 method for quantifying fish school feeding behavior in industrial aquaculture[J]. Computers and electronics in agriculture, 2023, 211: ID 108005. | 
																													
																						| 11 |  YANG L,  YU H H,  CHENG Y L, et al. A dual attention network based on efficientNet-B2 for short-term fish school feeding behavior analysis in aquaculture[J]. Computers and electronics in agriculture, 2021, 187: ID 106316. | 
																													
																						| 12 | 王鹤榕, 陈英义, 柴莹倩, 等. 融合VoVNetv2和置换注意力机制的鱼群摄食图像分割方法[J]. 智慧农业(中英文), 2023, 5( 4): 137- 149. | 
																													
																						|  |  WANG H R,  CHEN Y Y,  CHAI Y Q, et al. Image segmentation method combined with VoVNetv2 and shuffle attention mechanism for fish feeding in aquaculture[J]. Smart agriculture, 2023, 5( 4): 137- 149. | 
																													
																						| 13 | 徐立鸿, 黄薪, 刘世晶. 基于改进LRCN的鱼群摄食强度分类模型[J]. 农业机械学报, 2022, 53( 10): 236- 241. | 
																													
																						|  |  XU L H,  HUANG X,  LIU S J. Recognition of fish feeding intensity based on improved LRCN[J]. Transactions of the Chinese society for agricultural machinery, 2022, 53( 10): 236- 241. | 
																													
																						| 14 | 冯双星, 王丁弘, 潘良, 等. 基于轻量型 S3D 算法的鱼类摄食强度识别系统设计与试验[J]. 渔业现代化, 2023, 50( 3): 79- 86. | 
																													
																						|  |  FENG S X,  WANG D H,  PAN L, et al. Implementation of fish feeding intensity identification system using light- weight S3D algorithm[J]. Fishery modernization, 2023, 50( 3): 79- 86. | 
																													
																						| 15 | 黄平. 基于深度学习的鱼类摄食行为识别及精准养殖研究[D]. 南宁: 广西大学, 2022. | 
																													
																						|  |  HUANG P. Research on fish feeding behavior recognition and precision culture based on deep learning[D]. Nanning: Guangxi University, 2022. | 
																													
																						| 16 | 朱明, 张镇府, 黄凰, 等. 基于轻量级神经网络MobileNetV3-Small的鲈鱼摄食状态分类[J]. 农业工程学报, 2021, 37( 19): 165- 172. | 
																													
																						|  |  ZHU M,  ZHANG Z F,  HUANG H, et al. Classification of perch ingesting condition using lightweight neural network MobileNetV3-Small[J]. Transactions of the Chinese society of agricultural engineering, 2021, 37( 19): 165- 172. | 
																													
																						| 17 | 郭俊. 基于图像与声音信息的养殖鱼群摄食规律与投饵技术研究[D]. 宁波: 宁波大学, 2018. | 
																													
																						|  |  GUO J. Research on feeding patterns and bait technology of fish culture based on information of image and sound[D]. Ningbo: Ningbo University, 2018. | 
																													
																						| 18 |  KHANAM R,  HUSSAIN M. YOLOv11: An overview of the key architectural enhancements[EB/OL]. arXiv: 2410. 17725. 2024. | 
																													
																						| 19 | 刘杨. 基于深度学习的水下残饵检测方法研究与实现[D]. 扬州: 扬州大学, 2021. | 
																													
																						|  |  LIU Y. Research and realization on underwater uneaten feed pellets detection method based on deep learning[D]. Yangzhou: Yangzhou University, 2021. | 
																													
																						| 20 |  ZHAO H S,  SHI J P,  QI X J, et al. Pyramid scene parsing network[EB/OL]. arXiv: 1612.01105, 2017. | 
																													
																						| 21 |  LI H L,  LI J,  WEI H B, et al. Slim-neck by GSConv: A lightweight-design for real-time detector architectures[J]. Journal of real-time image processing, 2024, 21( 3), ID 62. | 
																													
																						| 22 |  CHEN C Y,  LIU M Y,  TUZEL O, et al. R-CNN for small object detection[M]// Lecture Notes in Computer Science. Cham: Springer International Publishing, 2017: 214- 230. | 
																													
																						| 23 |  SERMANET P,  FROME A,  REAL E. Attention for fine-grained categorization[EB/OL]. arXiv: 1412.7054, 2015. | 
																													
																						| 24 | 周华平, 宋明龙, 孙克雷. 一种轻量化的水下目标检测算法SG-Det[J]. 光电子·激光, 2023, 34( 2): 156- 165. | 
																													
																						|  |  ZHOU H P,  SONG M L,  SUN K L. SG-Det: A lightweight underwater image target detection method[J]. Journal of optoelectronics·laser, 2023, 34( 2): 156- 165. | 
																													
																						| 25 | 徐彦威, 李军, 董元方, 等. YOLO系列目标检测算法综述[J]. 计算机科学与探索, 2024, 18( 9): 2221- 2238. | 
																													
																						|  |  XU Y W,  LI J,  DONG Y F, et al. Survey of development of YOLO object detection algorithms[J]. Journal of frontiers of computer science and technology, 2024, 18( 9): 2221- 2238. | 
																													
																						| 26 |  ADARSH P,  RATHI P,  KUMAR M. YOLO v3-Tiny: Object Detection and Recognition using one stage improved model[C]// 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS). Piscataway, New Jersey, USA: IEEE, 2020: 687- 694. | 
																													
																						| 27 |  LI C,  LI L, et al. YOLOv6: A single-stage object detection framework for industrial applications[EB/OL]. arXiv: 2209.02976, 2022. | 
																													
																						| 28 |  LI D W,  XU L H,  LIU H Y. Detection of uneaten fish food pellets in underwater images for aquaculture[J]. Aquacultural engineering, 2017, 78: 85- 94. | 
																													
																						| 29 |  CAO J H,  XU L H. Research on counting algorithm of residual feeds in aquaculture based on machine vision[C]// 2018 IEEE 3rd International Conference on Image, Vision and Computing (ICIVC). Piscataway, New Jersey, USA: IEEE, 2018: 498- 503. | 
																													
																						| 30 |  HOU S Y,  LIU J C,  WANG Y Q, et al. Research on fish bait particles counting model based on improved MCNN[J]. Computers and electronics in agriculture, 2022, 196: ID 106858. | 
																													
																						| 31 |  WANG Y Q,  YU X N,  LIU J C, et al. Dynamic feeding method for aquaculture fish using multi-task neural network[J]. Aquaculture, 2022, 551: ID 737913. |