1 |
付玲, 高明鑫, 谭小莉, 等. 确保粮食安全, 狠抓水稻良种推广[J]. 中国种业, 2020, (11): 48-51.
|
|
FU L, GAO M X, TAN X L, et al. Ensuring food security and vigorously promoting popularization of rice variety[J]. China seed industry, 2020, (11): 48-51.
|
2 |
刘松. 水稻良种的选育及优质稻品种的生产和繁育[J]. 种子科技, 2022, 40(18): 142-144.
|
|
LIU S. Breeding of improved rice varieties and production and breeding of high-quality rice varieties[J]. Seed science & technology, 2022, 40(18): 142-144.
|
3 |
谢坤, 杨永义, 姚方印, 等. 水稻新品种鲁资稻14号的选育及配套栽培技术[J]. 北方水稻, 2024, 54(6): 43-45.
|
|
XIE K, YANG Y Y, YAO F Y, et al. Breeding and cultivation techniques of a new rice variety luzidao-14[J]. Nroth rice, 2024, 54(6): 43-45.
|
4 |
CHENG H T, KOC L, HARMSEN J, et al. Wide & deep learning for recommender systems[C]// Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. New York, USA: ACM, 2016: 7-10.
|
5 |
于蒙, 何文涛, 周绪川, 等. 推荐系统综述[J]. 计算机应用, 2022, 42(6): 1898-1913.
|
|
YU M, HE W T, ZHOU X C, et al. Review of recommendation system[J]. Journal of computer applications, 2022, 42(6): 1898-1913.
|
6 |
KOREN Y, RENDLE S, BELL R. Advances in collaborative filtering[M]// Recommender Systems Handbook. New York, USA: Springer, 2021: 91-142.
|
7 |
HE X N, LIAO L Z, ZHANG H W, et al. Neural collaborative filtering[C]// Proceedings of the 26th International Conference on World Wide Web. New York, USA: ACM, 2017: 173-182.
|
8 |
WANG X, HE X N, WANG M, et al. Neural graph collaborative filtering[C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2019: 165-174.
|
9 |
GUO Q Y, ZHUANG F Z, QIN C, et al. A survey on knowledge graph-based recommender systems[J]. IEEE transactions on knowledge and data engineering, 2022, 34(8): 3549-3568.
|
10 |
WANG X, WANG D X, XU C R, et al. Explainable reasoning over knowledge graphs for recommendation[J]. Proceedings of the AAAI conference on artificial intelligence, 2019, 33(1): 5329-5336.
|
11 |
WANG Q, MAO Z D, WANG B, et al. Knowledge graph embedding: A survey of approaches and applications[J]. IEEE transactions on knowledge and data engineering, 2017, 29(12): 2724-2743.
|
12 |
WANG H W, ZHANG F Z, XIE X, et al. DKN: Deep knowledge-aware network for news recommendation [C]// Proceedings of the 2018 World Wide Web Conference. New York, USA: ACM, 2018: 1835-1844.
|
13 |
WANG X, HUANG T L, WANG D X, et al. Learning intents behind interactions with knowledge graph for recommendation[C]// Proceedings of the Web Conference 2021. New York USA: ACM, 2021: 878-887.
|
14 |
YANG Y H, HUANG C, XIA L H, et al. Knowledge graph contrastive learning for recommendation[C]// Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2022: 1434-1443.
|
15 |
YANG Y H, HUANG C, XIA L H, et al. Knowledge graph self-supervised rationalization for recommendation[C]// Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2023: 3046-3056.
|
16 |
粟日. 基于数据端统计抽样构造与分析端深度学习算法的双端推荐系统研究[D]. 长沙: 中南大学, 2023.
|
|
SU R. Research on two-terminal recommendation system based on data-side statistical sampling construction and analysis-side deep learning algorithm[D]. Changsha: Central South University, 2023.
|
17 |
吴赛赛. 基于知识图谱的作物病虫害智能问答系统设计与实现[D]. 北京: 中国农业科学院, 2021.
|
|
WU S S. Design and implementation of intelligent question answering system for crop diseases and pests based on knowledge map[D]. Beijing: Chinese academy of agricultural sciences, 2021.
|
18 |
刘峤, 李杨, 段宏, 等. 知识图谱构建技术综述[J]. 计算机研究与发展, 2016, 53(3): 582-600.
|
|
LIU Q, LI Y, DUAN H, et al. Knowledge graph construction techniques[J]. Journal of computer research and development, 2016, 53(3): 582-600.
|
19 |
ABU-SALIH B. Domain-specific knowledge graphs: A survey[J]. Journal of network and computer applications, 2021, 185: ID 103076.
|
20 |
REN X B, XIA L H, ZHAO J S, et al. Disentangled contrastive collaborative filtering[C]// Proceedings of the 46th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2023: 1137-1146.
|
21 |
ZHANG Y, SANG L, ZHANG Y W, et al. Exploring the individuality and collectivity of intents behind interactions for graph collaborative filtering[C]// Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York, USA: ACM, 2024: 1253-1262.
|
22 |
WU X X, XIONG Y, ZHANG Y, et al. Dual intents graph modeling for user-centric group discovery[C]// Proceedings of the 32nd ACM International Conference on Information and Knowledge Management. New York, USA: ACM, 2023: 2716-2725.
|
23 |
YANG L, ZHANG Z L, SONG Y, et al. Diffusion models: A comprehensive survey of methods and applications[J]. ACM computing surveys, 2023, 56(4): 1-39.
|
24 |
KINGMA D, SALIMANS T, POOLE B, et al. Variational diffusion models[J]. Advances in neural information processing systems, 2021, 34: 21696-21707.
|
25 |
WU Z H, PAN S R, CHEN F W, et al. A comprehensive survey on graph neural networks[J]. IEEE transactions on neural networks and learning systems, 2021, 32(1): 4-24.
|
26 |
KHOSLA P, TETERWAK P, WANG C, et al. Supervised contrastive learning[J]. Advances in neural information processing systems, 2020, 33: 18661-18673.
|
27 |
WANG H, XU Y, YANG C, et al. Knowledge-adaptive contrastive learning for recommendation[C]// Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining. New York, USA: ACM, 2023: 535-543.
|
28 |
RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[EB/OL]. arXiv: 1205.2618, 2012.
|
29 |
ZHANG Y, YANG Q. A survey on multi-task learning[J]. IEEE transactions on knowledge and data engineering, 2022, 34(12): 5586-5609.
|
30 |
WANG Y F, TANG S Y, LEI Y T, et al. DisenHAN: Disentangled heterogeneous graph attention network for recommendation[C]// Proceedings of the 29th ACM International Conference on Information & Knowledge Management. New York, USA: ACM, 2020: 1605-1614.
|
31 |
WANG H W, ZHAO M, XIE X, et al. Knowledge graph convolutional networks for recommender systems[C]// The World Wide Web Conference. New York, USA: ACM, 2019: 3307-3313.
|
32 |
ZHANG F Z, YUAN N J, LIAN D F, et al. Collaborative knowledge base embedding for recommender systems[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2016: 353-362.
|
33 |
WANG H W, ZHANG F Z, ZHANG M D, et al. Knowledge-aware graph neural networks with label smoothness regularization for recommender systems[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM, 2019: 968-977.
|
34 |
WANG X, HE X N, CAO Y X, et al. KGAT[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York, USA: ACM, 2019: 950-958.
|
35 |
JIANG Y Q, YANG Y H, XIA L H, et al. DiffKG: Knowledge graph diffusion model for recommendation[C]// Proceedings of the 17th ACM International Conference on Web Search and Data Mining. New York, USA: ACM, 2024: 313-321.
|