1 |
陆宴辉, 赵紫华, 蔡晓明, 等. 我国农业害虫综合防治研究进展[J]. 应用昆虫学报, 2017, 54(3): 349-363.
|
|
LU Y H, ZHAO Z H, CAI X M, et al. Progresses on integrated pest management (IPM) of agricultural insect pests in China[J]. Chinese journal of applied entomology, 2017, 54(3): 349-363.
|
2 |
NGUGI L C, ABELWAHAB M, ABO-ZAHHAD M. Recent advances in image processing techniques for automated leaf pest and disease recognition: A review[J]. Information processing in agriculture, 2021, 8(1): 27-51.
|
3 |
郑果, 姜玉松, 沈永林. 基于改进YOLOv7的水稻害虫识别方法[J]. 华中农业大学学报, 2023, 42(3): 143-151.
|
|
ZHENG G, JIANG Y S, SHEN Y L. Recognition of rice pests based on improved YOLOv7[J]. Journal of Huazhong agricultural university, 2023, 42(3): 143-151.
|
4 |
吴杰, 施磊, 张志安. 基于深度学习的害虫图像识别与分类方法研究[J]. 计算技术与自动化, 2023, 42(1): 166-173.
|
|
WU J, SHI L, ZHANG Z A. Research on recognition and classification method of pest images based on deep learning[J]. Computing technology and automation, 2023, 42(1): 166-173.
|
5 |
TANG Z, CHEN Z, QI F, et al. Pest-YOLO: Deep image mining and multi-feature fusion for real-time agriculture pest detection[C]// 2021 IEEE International Conference on Data Mining (ICDM). Piscataway, New Jersey, USA: IEEE, 2021: 1348-1353.
|
6 |
STORK N E. How many species of insects and other terrestrial arthropods are there on earth?[J]. Annu rev entomol, 2018, 63: 31-45.
|
7 |
LAROCHELLE H, ERHAN D, BENGIO Y. Zero-data learning of new tasks[C]// AAAI'08: Proceedings of the 23rd national conference on Artificial intelligence. New York, USA: ACM, 2008, 2: 646-651.
|
8 |
POURPANAH F, ABDAR M, LUO Y, et al. A review of generalized zero-shot learning methods[J]. IEEE trans pattern anal Mach intell, 2023, 45(4): 4051-4070.
|
9 |
MISHRA A, REDDY S K, MITTAL A, et al. A generative model for zero shot learning using conditional variational autoencoders[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway, New Jersey, USA: IEEE, 2018: 2188-2196.
|
10 |
SOHN K, YAN X C, LEE H. Learning structured output representation using deep conditional generative models[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems-Volume 2. New York, USA: ACM, 2015: 3483-3491.
|
11 |
BOSER B E, GUYON I M, VAPNIK V N. A training algorithm for optimal margin classifiers[C]// Proceedings of The Fifth Annual Workshop on Computational Learning Theory. New York, USA: ACM, 1992: 144–152.
|
12 |
XIAN Y Q, LORENZ T, SCHIELE B, et al. Feature generating networks for zero-shot learning[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, New Jersey, USA: IEEE, 2018: 5542-5551.
|
13 |
ARJOVSKY M, CHINTALA S, BOTTOU L. Wasserstein generative adversarial networks[C]// Proceedings of the 34th International Conference on Machine Learning - Volume 70. New York, USA: ACM, 2017: 214-223.
|
14 |
HAN Z Y, FU Z Y, YANG J. Learning the redundancy-free features for generalized zero-shot object recognition[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2020: 12865-12874.
|
15 |
HAN Z Y, FU Z Y, CHEN S, et al. Contrastive embedding for generalized zero-shot learning[C]// 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2021: 2371-2381.
|
16 |
ZHONG F M, CHEN Z K, ZHANG Y C, et al. Zero- and few-shot learning for diseases recognition of Citrus aurantium L. using conditional adversarial autoencoders[J]. Computers and electronics in agriculture, 2020, 179: ID 105828.
|
17 |
WAH C, BRANSON S, WELINDER P, et al. The caltech-ucsd birds-200-2011 dataset[EB/OL]. [2023-12-10].
|
18 |
GOODFELLOW I J, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial nets[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems-Volume 2. New York, USA: ACM, 2014: 2672-2680.
|
19 |
Radford A, Kim J W, Hallacy C, et al. Learning transferable visual models from natural language supervision[C]// International Conference on Machine Learning. New York, USA: PMLR, 2021: 8748-8763.
|
20 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2016: 770-778.
|
21 |
DENG J, DONG W, SOCHER R, et al. ImageNet: A large-scale hierarchical image database[C]// 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, New Jersey, USA: IEEE, 2009: 248-255.
|
22 |
KINGMA D P, BA J. Adam: A method for stochastic optimization[EB/OL]. arXiv:1412.6980, 2014.
|
23 |
LAMPERT C H, NICKISCH H, HARMELING S. Learning to detect unseen object classes by between-class attribute transfer[C]// 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, New Jersey, USA: IEEE, 2009: 951-958.
|
24 |
XIAN Y, LAMPERT C H, SCHIELE B, et al. Zero-shot learning-a comprehensive evaluation of the good, the bad and the ugly[J]. IEEE trans pattern anal Mach intell, 2019, 41(9): 2251-2265.
|
25 |
PATTERSON G, XU C, SU H, et al. The SUN attribute database: Beyond categories for deeper scene understanding[J]. International journal of computer vision, 2014, 108(1): 59-81.
|
26 |
NILSBACK M E, ZISSERMAN A. Automated flower classification over a large number of classes[C]// 2008 Sixth Indian Conference on Computer Vision, Graphics & Image Processing. Piscataway, New Jersey, USA: IEEE, 2008: 722-729.
|
27 |
VERMA V K, ARORA G, MISHRA A, et al. Generalized zero-shot learning via synthesized examples[C]// 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway, New Jersey, USA: IEEE, 2018: 4281-4289.
|
28 |
FELIX R, VIJAY KUMAR B G, REID I, et al. Multi-modal cycle-consistent generalized zero-shot learning[M]// Computer Vision-ECCV 2018. Cham: Springer International Publishing, 2018: 21-37.
|
29 |
XIAN Y Q, SHARMA S, SCHIELE B, et al. F-VAEGAN-D2: A feature generating framework for any-shot learning[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2019: 10275-10284.
|
30 |
LI J J, JING M M, LU K, et al. Leveraging the invariant side of generative zero-shot learning[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2019: 7402-7411.
|
31 |
KESHARI R, SINGH R, VATSA M. Generalized zero-shot learning via over-complete distribution[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2020: 13300-13308.
|
32 |
NARAYAN S, GUPTA A, KHAN F S, et al. Latent embedding feedback and discriminative features for zero-shot classification[M]// Computer Vision-ECCV 2020. Cham: Springer International Publishing, 2020: 479-495.
|
33 |
HUYNH D, ELHAMIFAR E. Fine-grained generalized zero-shot learning via dense attribute-based attention[C]//2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2020: 4483-4493.
|
34 |
SCHONFELD E, EBRAHIMI S, SINHA S, et al. Generalized zero- and few-shot learning via aligned variational autoencoders[C]// 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway, New Jersey, USA: IEEE, 2019: 8247-8255.
|
35 |
CHEN S M, WANG W J, XIA B H, et al. FREE: feature refinement for generalized zero-shot learning[C]// 2021 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway, New Jersey, USA: IEEE, 2021: 122-131.
|
36 |
MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL]. arXiv:1301.3781, 2013.
|